These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 21438601)

  • 1. Toward sustainable material usage: evaluating the importance of market motivated agency in modeling material flows.
    Gaustad G; Olivetti E; Kirchain R
    Environ Sci Technol; 2011 May; 45(9):4110-7. PubMed ID: 21438601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unearthing potentials for decarbonizing the U.S. aluminum cycle.
    Liu G; Bangs CE; Müller DB
    Environ Sci Technol; 2011 Nov; 45(22):9515-22. PubMed ID: 21970673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increasing secondary and renewable material use: a chance constrained modeling approach to manage feedstock quality variation.
    Olivetti EA; Gaustad GG; Field FR; Kirchain RE
    Environ Sci Technol; 2011 May; 45(9):4118-26. PubMed ID: 21466183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Globally sustainable manganese metal production and use.
    Hagelstein K
    J Environ Manage; 2009 Sep; 90(12):3736-40. PubMed ID: 19467569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Economic and policy instrument analyses in support of the scrap tire recycling program in Taiwan.
    Chang NB
    J Environ Manage; 2008 Feb; 86(3):435-50. PubMed ID: 17276578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quality- and dilution losses in the recycling of ferrous materials from end-of-life passenger cars: input-output analysis under explicit consideration of scrap quality.
    Nakamura S; Kondo Y; Matsubae K; Nakajima K; Tasaki T; Nagasaka T
    Environ Sci Technol; 2012 Sep; 46(17):9266-73. PubMed ID: 22876977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of automobiles for the future of aluminum recycling.
    Modaresi R; Müller DB
    Environ Sci Technol; 2012 Aug; 46(16):8587-94. PubMed ID: 22816552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping the global flow of aluminum: from liquid aluminum to end-use goods.
    Cullen JM; Allwood JM
    Environ Sci Technol; 2013 Apr; 47(7):3057-64. PubMed ID: 23438734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Forecasting global aluminium flows to demonstrate the need for improved sorting and recycling methods.
    Van den Eynde S; Bracquené E; Diaz-Romero D; Zaplana I; Engelen B; Duflou JR; Peeters JR
    Waste Manag; 2022 Jan; 137():231-240. PubMed ID: 34801956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of the greenhouse effect impact of technologies used for energy recovery from municipal waste: a case for England.
    Papageorgiou A; Barton JR; Karagiannidis A
    J Environ Manage; 2009 Jul; 90(10):2999-3012. PubMed ID: 19482412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic material flow modeling: an effort to calibrate and validate aluminum stocks and flows in Austria.
    Buchner H; Laner D; Rechberger H; Fellner J
    Environ Sci Technol; 2015 May; 49(9):5546-54. PubMed ID: 25851493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The need for evolution in healthcare decision modeling.
    Lee RC; Donaldson C; Cook LS
    Med Care; 2003 Sep; 41(9):1024-33. PubMed ID: 12972842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic analysis of global copper flows. Global stocks, postconsumer material flows, recycling indicators, and uncertainty evaluation.
    Glöser S; Soulier M; Tercero Espinoza LA
    Environ Sci Technol; 2013 Jun; 47(12):6564-72. PubMed ID: 23725041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Moving toward the circular economy: the role of stocks in the Chinese steel cycle.
    Pauliuk S; Wang T; Müller DB
    Environ Sci Technol; 2012 Jan; 46(1):148-54. PubMed ID: 22091699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LCA of local strategies for energy recovery from waste in England, applied to a large municipal flow.
    Tunesi S
    Waste Manag; 2011 Mar; 31(3):561-71. PubMed ID: 20937556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Life cycle assessment of municipal solid waste management with regard to greenhouse gas emissions: case study of Tianjin, China.
    Zhao W; van der Voet E; Zhang Y; Huppes G
    Sci Total Environ; 2009 Feb; 407(5):1517-26. PubMed ID: 19068268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamic analysis of contamination by alloying elements in aluminum recycling.
    Nakajima K; Takeda O; Miki T; Matsubae K; Nakamura S; Nagasaka T
    Environ Sci Technol; 2010 Jul; 44(14):5594-600. PubMed ID: 20536230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An economic analysis of scrap tire pyrolysis, potential and new opportunities.
    Goksal FP
    Heliyon; 2022 Nov; 8(11):e11669. PubMed ID: 36419657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Room-temperature ionic liquids and composite materials: platform technologies for CO(2) capture.
    Bara JE; Camper DE; Gin DL; Noble RD
    Acc Chem Res; 2010 Jan; 43(1):152-9. PubMed ID: 19795831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Management of MSW in Spain and recovery of packaging steel scrap.
    Tayibi H; Peña C; López FA; López-Delgado A
    Waste Manag; 2007; 27(11):1655-65. PubMed ID: 17161595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.