These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 21438632)
21. Addressing central nervous system (CNS) penetration in drug discovery: basics and implications of the evolving new concept. Reichel A Chem Biodivers; 2009 Nov; 6(11):2030-49. PubMed ID: 19937839 [TBL] [Abstract][Full Text] [Related]
22. Development of a humanized in vitro blood-brain barrier model to screen for brain penetration of antiepileptic drugs. Cucullo L; Hossain M; Rapp E; Manders T; Marchi N; Janigro D Epilepsia; 2007 Mar; 48(3):505-16. PubMed ID: 17326793 [TBL] [Abstract][Full Text] [Related]
23. Transport of steroid hormones through the rat blood-brain barrier. Primary role of albumin-bound hormone. Pardridge WM; Mietus LJ J Clin Invest; 1979 Jul; 64(1):145-54. PubMed ID: 447850 [TBL] [Abstract][Full Text] [Related]
24. Hurdles with using in vitro models to predict human blood-brain barrier drug permeability: a special focus on transporters and metabolizing enzymes. Shawahna R; Decleves X; Scherrmann JM Curr Drug Metab; 2013 Jan; 14(1):120-36. PubMed ID: 23215812 [TBL] [Abstract][Full Text] [Related]
25. Use of a physiologically based pharmacokinetic model to study the time to reach brain equilibrium: an experimental analysis of the role of blood-brain barrier permeability, plasma protein binding, and brain tissue binding. Liu X; Smith BJ; Chen C; Callegari E; Becker SL; Chen X; Cianfrogna J; Doran AC; Doran SD; Gibbs JP; Hosea N; Liu J; Nelson FR; Szewc MA; Van Deusen J J Pharmacol Exp Ther; 2005 Jun; 313(3):1254-62. PubMed ID: 15743928 [TBL] [Abstract][Full Text] [Related]
26. Brain to blood efflux transport of adenosine: blood-brain barrier studies in the rat. Isakovic AJ; Abbott NJ; Redzic ZB J Neurochem; 2004 Jul; 90(2):272-86. PubMed ID: 15228584 [TBL] [Abstract][Full Text] [Related]
27. Dual-targeting topotecan liposomes modified with tamoxifen and wheat germ agglutinin significantly improve drug transport across the blood-brain barrier and survival of brain tumor-bearing animals. Du J; Lu WL; Ying X; Liu Y; Du P; Tian W; Men Y; Guo J; Zhang Y; Li RJ; Zhou J; Lou JN; Wang JC; Zhang X; Zhang Q Mol Pharm; 2009; 6(3):905-17. PubMed ID: 19344115 [TBL] [Abstract][Full Text] [Related]
28. Comparison of in vitro and in vivo models of drug transcytosis through the blood-brain barrier. Pardridge WM; Triguero D; Yang J; Cancilla PA J Pharmacol Exp Ther; 1990 May; 253(2):884-91. PubMed ID: 2338660 [TBL] [Abstract][Full Text] [Related]
29. Current in vitro and in silico models of blood-brain barrier penetration: a practical view. Vastag M; Keseru GM Curr Opin Drug Discov Devel; 2009 Jan; 12(1):115-24. PubMed ID: 19152220 [TBL] [Abstract][Full Text] [Related]
30. Drug delivery and in vitro models of the blood-brain barrier. Cucullo L; Aumayr B; Rapp E; Janigro D Curr Opin Drug Discov Devel; 2005 Jan; 8(1):89-99. PubMed ID: 15679176 [TBL] [Abstract][Full Text] [Related]
31. An in vitro blood-brain barrier model for high throughput (HTS) toxicological screening. Culot M; Lundquist S; Vanuxeem D; Nion S; Landry C; Delplace Y; Dehouck MP; Berezowski V; Fenart L; Cecchelli R Toxicol In Vitro; 2008 Apr; 22(3):799-811. PubMed ID: 18280105 [TBL] [Abstract][Full Text] [Related]
32. Development of an in vitro blood-brain barrier model to study molecular neuropathogenesis and neurovirologic disorders induced by human immunodeficiency virus type 1 infection. Mukhtar M; Pomerantz RJ J Hum Virol; 2000; 3(6):324-34. PubMed ID: 11100913 [TBL] [Abstract][Full Text] [Related]
33. Functional and developmental analysis of the blood-brain barrier in zebrafish. Jeong JY; Kwon HB; Ahn JC; Kang D; Kwon SH; Park JA; Kim KW Brain Res Bull; 2008 Mar; 75(5):619-28. PubMed ID: 18355638 [TBL] [Abstract][Full Text] [Related]
34. Co-culture based blood-brain barrier in vitro model, a tissue engineering approach using immortalized cell lines for drug transport study. Zhang Z; McGoron AJ; Crumpler ET; Li CZ Appl Biochem Biotechnol; 2011 Jan; 163(2):278-95. PubMed ID: 20652765 [TBL] [Abstract][Full Text] [Related]
35. Improving the in vitro prediction of in vivo central nervous system penetration: integrating permeability, P-glycoprotein efflux, and free fractions in blood and brain. Summerfield SG; Stevens AJ; Cutler L; del Carmen Osuna M; Hammond B; Tang SP; Hersey A; Spalding DJ; Jeffrey P J Pharmacol Exp Ther; 2006 Mar; 316(3):1282-90. PubMed ID: 16330496 [TBL] [Abstract][Full Text] [Related]
36. Strategies to optimize brain penetration in drug discovery. Liu X; Chen C Curr Opin Drug Discov Devel; 2005 Jul; 8(4):505-12. PubMed ID: 16022187 [TBL] [Abstract][Full Text] [Related]
37. Exogenous expression of claudin-5 induces barrier properties in cultured rat brain capillary endothelial cells. Ohtsuki S; Sato S; Yamaguchi H; Kamoi M; Asashima T; Terasaki T J Cell Physiol; 2007 Jan; 210(1):81-6. PubMed ID: 16998798 [TBL] [Abstract][Full Text] [Related]
38. Comparison of in vitro cell models in predicting in vivo brain entry of drugs. Hakkarainen JJ; Jalkanen AJ; Kääriäinen TM; Keski-Rahkonen P; Venäläinen T; Hokkanen J; Mönkkönen J; Suhonen M; Forsberg MM Int J Pharm; 2010 Dec; 402(1-2):27-36. PubMed ID: 20920560 [TBL] [Abstract][Full Text] [Related]
39. Central nervous system penetration for small molecule therapeutic agents does not increase in multiple sclerosis- and Alzheimer's disease-related animal models despite reported blood-brain barrier disruption. Cheng Z; Zhang J; Liu H; Li Y; Zhao Y; Yang E Drug Metab Dispos; 2010 Aug; 38(8):1355-61. PubMed ID: 20427691 [TBL] [Abstract][Full Text] [Related]
40. Puromycin-purified rat brain microvascular endothelial cell cultures exhibit improved barrier properties in response to glucocorticoid induction. Calabria AR; Weidenfeller C; Jones AR; de Vries HE; Shusta EV J Neurochem; 2006 May; 97(4):922-33. PubMed ID: 16573646 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]