These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Functionalization of polyanhydride microparticles with di-mannose influences uptake by and intracellular fate within dendritic cells. Phanse Y; Carrillo-Conde BR; Ramer-Tait AE; Roychoudhury R; Pohl NL; Narasimhan B; Wannemuehler MJ; Bellaire BH Acta Biomater; 2013 Nov; 9(11):8902-9. PubMed ID: 23796408 [TBL] [Abstract][Full Text] [Related]
4. The effect of polyanhydride chemistry in particle-based cancer vaccines on the magnitude of the anti-tumor immune response. Wafa EI; Geary SM; Goodman JT; Narasimhan B; Salem AK Acta Biomater; 2017 Mar; 50():417-427. PubMed ID: 28063991 [TBL] [Abstract][Full Text] [Related]
7. Polyanhydride Nanoparticles Induce Low Inflammatory Dendritic Cell Activation Resulting in CD8 Darling R; Senapati S; Christiansen J; Liu L; Ramer-Tait AE; Narasimhan B; Wannemuehler M Int J Nanomedicine; 2020; 15():6579-6592. PubMed ID: 32982219 [TBL] [Abstract][Full Text] [Related]
8. Dendritic type, accessory cells within the mammalian thymic microenvironment. Antigen presentation in the dendritic neuro-endocrine-immune cellular network. Bodey B; Bodey B; Kaiser HE In Vivo; 1997; 11(4):351-70. PubMed ID: 9292303 [TBL] [Abstract][Full Text] [Related]
9. Characterizing the antitumor response in mice treated with antigen-loaded polyanhydride microparticles. Joshi VB; Geary SM; Carrillo-Conde BR; Narasimhan B; Salem AK Acta Biomater; 2013 Mar; 9(3):5583-9. PubMed ID: 23153760 [TBL] [Abstract][Full Text] [Related]
10. The simultaneous effect of polymer chemistry and device geometry on the in vitro activation of murine dendritic cells. Petersen LK; Xue L; Wannemuehler MJ; Rajan K; Narasimhan B Biomaterials; 2009 Oct; 30(28):5131-42. PubMed ID: 19539989 [TBL] [Abstract][Full Text] [Related]
11. Targeting glycan modified OVA to murine DC-SIGN transgenic dendritic cells enhances MHC class I and II presentation. Singh SK; Stephani J; Schaefer M; Kalay H; García-Vallejo JJ; den Haan J; Saeland E; Sparwasser T; van Kooyk Y Mol Immunol; 2009 Dec; 47(2-3):164-74. PubMed ID: 19818504 [TBL] [Abstract][Full Text] [Related]
12. AIMP1/p43 protein induces the maturation of bone marrow-derived dendritic cells with T helper type 1-polarizing ability. Kim E; Kim SH; Kim S; Cho D; Kim TS J Immunol; 2008 Mar; 180(5):2894-902. PubMed ID: 18292511 [TBL] [Abstract][Full Text] [Related]
13. Interactions of proteoliposomes from serogroup B Neisseria meningitidis with bone marrow-derived dendritic cells and macrophages: adjuvant effects and antigen delivery. Rodríguez T; Pérez O; Ménager N; Ugrinovic S; Bracho G; Mastroeni P Vaccine; 2005 Jan; 23(10):1312-21. PubMed ID: 15652674 [TBL] [Abstract][Full Text] [Related]
14. Effect of polymer chemistry and fabrication method on protein release and stability from polyanhydride microspheres. Lopac SK; Torres MP; Wilson-Welder JH; Wannemuehler MJ; Narasimhan B J Biomed Mater Res B Appl Biomater; 2009 Nov; 91(2):938-947. PubMed ID: 19642209 [TBL] [Abstract][Full Text] [Related]
15. Stroma-dependent development of two dendritic-like cell types with distinct antigen presenting capability. Periasamy P; O'Neill HC Exp Hematol; 2013 Mar; 41(3):281-92. PubMed ID: 23178375 [TBL] [Abstract][Full Text] [Related]
16. Lead effects on development and function of bone marrow-derived dendritic cells promote Th2 immune responses. Gao D; Mondal TK; Lawrence DA Toxicol Appl Pharmacol; 2007 Jul; 222(1):69-79. PubMed ID: 17512567 [TBL] [Abstract][Full Text] [Related]