BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 21439569)

  • 1. An improved multi-joint EMG-assisted optimization approach to estimate joint and muscle forces in a musculoskeletal model of the lumbar spine.
    Gagnon D; Arjmand N; Plamondon A; Shirazi-Adl A; Larivière C
    J Biomech; 2011 May; 44(8):1521-9. PubMed ID: 21439569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of trunk muscle forces and spinal loads estimated by two biomechanical models.
    Arjmand N; Gagnon D; Plamondon A; Shirazi-Adl A; Larivière C
    Clin Biomech (Bristol, Avon); 2009 Aug; 24(7):533-41. PubMed ID: 19493597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trunk muscle activation and associated lumbar spine joint shear forces under different levels of external forward force applied to the trunk.
    Kingma I; Staudenmann D; van Dieën JH
    J Electromyogr Kinesiol; 2007 Feb; 17(1):14-24. PubMed ID: 16531071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative study of two trunk biomechanical models under symmetric and asymmetric loadings.
    Arjmand N; Gagnon D; Plamondon A; Shirazi-Adl A; Larivière C
    J Biomech; 2010 Feb; 43(3):485-91. PubMed ID: 19880122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of muscle forces and joint load from an optimization and EMG assisted lumbar spine model: towards development of a hybrid approach.
    Cholewicki J; McGill SM; Norman RW
    J Biomech; 1995 Mar; 28(3):321-31. PubMed ID: 7730390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of trunk muscle forces, spinal loads and stability estimated by one stability- and three EMG-assisted optimization approaches.
    Mohammadi Y; Arjmand N; Shirazi-Adl A
    Med Eng Phys; 2015 Aug; 37(8):792-800. PubMed ID: 26117333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wrapping of trunk thoracic extensor muscles influences muscle forces and spinal loads in lifting tasks.
    Arjmand N; Shirazi-Adl A; Bazrgari B
    Clin Biomech (Bristol, Avon); 2006 Aug; 21(7):668-75. PubMed ID: 16678948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of optimal follower load path generated by trunk muscle coordination.
    Kim K; Kim YH; Lee S
    J Biomech; 2011 May; 44(8):1614-7. PubMed ID: 21453921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A biomechanical comparison between expert and novice manual materials handlers using a multi-joint EMG-assisted optimization musculoskeletal model of the lumbar spine.
    Gagnon D; Plamondon A; Larivière C
    J Biomech; 2016 Sep; 49(13):2938-2945. PubMed ID: 27469898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitivity of kinematics-based model predictions to optimization criteria in static lifting tasks.
    Arjmand N; Shirazi-Adl A
    Med Eng Phys; 2006 Jul; 28(6):504-14. PubMed ID: 16288897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of EMG processing on biomechanical models of muscle joint systems: sensitivity of trunk muscle moments, spinal forces, and stability.
    Staudenmann D; Potvin JR; Kingma I; Stegeman DF; van Dieën JH
    J Biomech; 2007; 40(4):900-9. PubMed ID: 16765965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscle force evaluation and the role of posture in human lumbar spine under compression.
    Shirazi-Adl A; Sadouk S; Parnianpour M; Pop D; El-Rich M
    Eur Spine J; 2002 Dec; 11(6):519-26. PubMed ID: 12522708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of trunk muscle forces for flexion and extension by using a validated finite element model of the lumbar spine and measured in vivo data.
    Rohlmann A; Bauer L; Zander T; Bergmann G; Wilke HJ
    J Biomech; 2006; 39(6):981-9. PubMed ID: 16549091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of trunk muscles in generating follower load in the lumbar spine of neutral standing posture.
    Kim K; Kim YH
    J Biomech Eng; 2008 Aug; 130(4):041005. PubMed ID: 18601447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A combined finite element and optimization investigation of lumbar spine mechanics with and without muscles.
    Goel VK; Kong W; Han JS; Weinstein JN; Gilbertson LG
    Spine (Phila Pa 1976); 1993 Sep; 18(11):1531-41. PubMed ID: 8235826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Is there a low-back cost to hip-centric exercise? Quantifying the lumbar spine joint compression and shear forces during movements used to overload the hips.
    Frost DM; Beach T; Fenwick C; Callaghan J; McGill S
    J Sports Sci; 2012 May; 30(9):859-70. PubMed ID: 22468799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of low back kinetic estimates obtained through posture matching, rigid link modeling and an EMG-assisted model.
    Parkinson RJ; Bezaire M; Callaghan JP
    Appl Ergon; 2011 Jul; 42(5):644-51. PubMed ID: 21055725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A two-step EMG-and-optimization process to estimate muscle force during dynamic movement.
    Amarantini D; Rao G; Berton E
    J Biomech; 2010 Jun; 43(9):1827-30. PubMed ID: 20206935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model and in vivo studies on human trunk load partitioning and stability in isometric forward flexions.
    Arjmand N; Shirazi-Adl A
    J Biomech; 2006; 39(3):510-21. PubMed ID: 16389091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A proprioception based regulation model to estimate the trunk muscle forces.
    Pomero V; Lavaste F; Imbert G; Skalli W
    Comput Methods Biomech Biomed Engin; 2004 Dec; 7(6):331-8. PubMed ID: 15621653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.