BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 21439608)

  • 1. Sulfate threshold target to control methylmercury levels in wetland ecosystems.
    Corrales J; Naja GM; Dziuba C; Rivero RG; Orem W
    Sci Total Environ; 2011 May; 409(11):2156-62. PubMed ID: 21439608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Legacy and fate of mercury and methylmercury in the Florida Everglades.
    Liu G; Naja GM; Kalla P; Scheidt D; Gaiser E; Cai Y
    Environ Sci Technol; 2011 Jan; 45(2):496-501. PubMed ID: 21158447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methylmercury and dissolved organic carbon relationships in a wetland-rich watershed impacted by elevated sulfate from mining.
    Berndt ME; Bavin TK
    Environ Pollut; 2012 Feb; 161():321-7. PubMed ID: 21705118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sulfur transformations in pilot-scale constructed wetland treating high sulfate-containing contaminated groundwater: a stable isotope assessment.
    Wu S; Jeschke C; Dong R; Paschke H; Kuschk P; Knöller K
    Water Res; 2011 Dec; 45(20):6688-98. PubMed ID: 22055121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation of methylmercury and its effects on mercury distribution and cycling in the Florida Everglades.
    Li Y; Mao Y; Liu G; Tachiev G; Roelant D; Feng X; Cai Y
    Environ Sci Technol; 2010 Sep; 44(17):6661-6. PubMed ID: 20701294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Factors that influence methylmercury flux rates from wetland sediments.
    Holmes J; Lean D
    Sci Total Environ; 2006 Sep; 368(1):306-19. PubMed ID: 16410019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methylmercury in water, sediment, and invertebrates in created wetlands of Rouge Park, Toronto, Canada.
    Sinclair KA; Xie Q; Mitchell CP
    Environ Pollut; 2012 Dec; 171():207-15. PubMed ID: 22940274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tracing sources of sulfur in the Florida Everglades.
    Bates AL; Orem WH; Harvey JW; Spiker EC
    J Environ Qual; 2002; 31(1):287-99. PubMed ID: 11837434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wetland influence on mercury fate and transport in a temperate forested watershed.
    Selvendiran P; Driscoll CT; Bushey JT; Montesdeoca MR
    Environ Pollut; 2008 Jul; 154(1):46-55. PubMed ID: 18215448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental and human exposure assessment monitoring of communities near an abandoned mercury mine in the Philippines: a toxic legacy.
    Maramba NP; Reyes JP; Francisco-Rivera AT; Panganiban LC; Dioquino C; Dando N; Timbang R; Akagi H; Castillo MT; Quitoriano C; Afuang M; Matsuyama A; Eguchi T; Fuchigami Y
    J Environ Manage; 2006 Oct; 81(2):135-45. PubMed ID: 16949727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methylmercury production in a chronically sulfate-impacted sub-boreal wetland.
    Johnson NW; Mitchell CP; Engstrom DR; Bailey LT; Coleman Wasik JK; Berndt ME
    Environ Sci Process Impacts; 2016 Jun; 18(6):725-34. PubMed ID: 27224550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mercury bio-concentration factor in mosquito fish (Gambusia spp.) in the Florida Everglades.
    Julian P
    Bull Environ Contam Toxicol; 2013 Mar; 90(3):329-32. PubMed ID: 23269441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of iron amendment on net methylmercury export from tidal wetland microcosms.
    Ulrich PD; Sedlak DL
    Environ Sci Technol; 2010 Oct; 44(19):7659-65. PubMed ID: 20836490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution of total and methylmercury in different ecosystem compartments in the Everglades: implications for mercury bioaccumulation.
    Liu G; Cai Y; Philippi T; Kalla P; Scheidt D; Richards J; Scinto L; Appleby C
    Environ Pollut; 2008 May; 153(2):257-65. PubMed ID: 17945404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wetlands as principal zones of methylmercury production in southern Louisiana and the Gulf of Mexico region.
    Hall BD; Aiken GR; Krabbenhoft DP; Marvin-Dipasquale M; Swarzenski CM
    Environ Pollut; 2008 Jul; 154(1):124-34. PubMed ID: 18242808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Environmental assessment of mercury dispersion, transformation and bioavailability in the Lake Victoria Goldfields, Tanzania.
    Ikingura JR; Akagi H; Mujumba J; Messo C
    J Environ Manage; 2006 Oct; 81(2):167-73. PubMed ID: 16782263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of the major source and sink of methylmercury in the Florida Everglades.
    Li Y; Yin Y; Liu G; Tachiev G; Roelant D; Jiang G; Cai Y
    Environ Sci Technol; 2012 Jun; 46(11):5885-93. PubMed ID: 22536798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Horizontal and vertical variability of mercury species in pore water and sediments in small lakes in Ontario.
    He T; Lu J; Yang F; Feng X
    Sci Total Environ; 2007 Nov; 386(1-3):53-64. PubMed ID: 17720225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial and seasonal variability of dissolved methylmercury in two stream basins in the eastern United States.
    Bradley PM; Burns DA; Murray KR; Brigham ME; Button DT; Chasar LC; Marvin-Dipasquale M; Lowery MA; Journey CA
    Environ Sci Technol; 2011 Mar; 45(6):2048-55. PubMed ID: 21341694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sulfate addition increases methylmercury production in an experimental wetland.
    Jeremiason JD; Engstrom DR; Swain EB; Nater EA; Johnson BM; Almendinger JE; Monson BA; Kolka RK
    Environ Sci Technol; 2006 Jun; 40(12):3800-6. PubMed ID: 16830545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.