These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 21439965)

  • 21. Rearing under different conditions results in different functional recoveries of giant interneurons in unilaterally cercus-ablated crickets, Gryllus bimaculatus.
    Kanou M; Kuroishi H; Takuwa H
    Zoolog Sci; 2008 Jun; 25(6):653-61. PubMed ID: 18624575
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Movement analyses of wood cricket ( Nemobius sylvestris) (Orthoptera: Gryllidae).
    Brouwers NC; Newton AC
    Bull Entomol Res; 2010 Dec; 100(6):623-34. PubMed ID: 20003571
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of self-generated wind on compensational recovery of escape direction in unilaterally cercus-ablated crickets, Gryllus bimaculatus.
    Takuwa H; Ota S; Kanou M
    Zoolog Sci; 2008 Mar; 25(3):235-41. PubMed ID: 18393559
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predator-induced flow disturbances alert prey, from the onset of an attack.
    Casas J; Steinmann T
    Proc Biol Sci; 2014 Sep; 281(1790):. PubMed ID: 25030986
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rearing conditions required for behavioral compensation after unilateral cercal ablation in the cricket Gryllus bimaculatus.
    Kanou M; Teshima N; Nagami T
    Zoolog Sci; 2002 Apr; 19(4):403-9. PubMed ID: 12130817
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biomechanical Analysis of a Filiform Mechanosensory Hair Socket of Crickets.
    Joshi K; Mian A; Miller J
    J Biomech Eng; 2016 Aug; 138(8):. PubMed ID: 27322099
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The fight and flight responses of crickets depleted of biogenic amines.
    Stevenson PA; Hofmann HA; Schoch K; Schildberger K
    J Neurobiol; 2000 May; 43(2):107-20. PubMed ID: 10770840
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Persistence of auditory modulation of wind-induced escape behavior in crickets.
    Lu A; Fukutomi M; Shidara H; Ogawa H
    Front Physiol; 2023; 14():1153913. PubMed ID: 37250114
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Crickets alter wind-elicited escape strategies depending on acoustic context.
    Fukutomi M; Ogawa H
    Sci Rep; 2017 Nov; 7(1):15158. PubMed ID: 29123249
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Free-flight encounters between praying mantids (Parasphendale agrionina) and bats (Eptesicus fuscus).
    Triblehorn JD; Ghose K; Bohn K; Moss CF; Yager DD
    J Exp Biol; 2008 Feb; 211(Pt 4):555-62. PubMed ID: 18245632
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interaction between arthropod filiform hairs in a fluid environment.
    Cummins B; Gedeon T; Klapper I; Cortez R
    J Theor Biol; 2007 Jul; 247(2):266-80. PubMed ID: 17434184
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sensitive Period for the Recovery of the Response Rate of the Wind-Evoked Escape Behavior of Unilaterally Cercus-Ablated Crickets (Gryllus bimaculatus).
    Takuwa H; Kanou M
    Zoolog Sci; 2015 Apr; 32(2):119-23. PubMed ID: 25826058
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional regeneration of a gravity sensory system during development in an insect (Gryllus bimaculatus).
    Horn E; Föller W
    Neuroreport; 2001 Aug; 12(12):2685-91. PubMed ID: 11522948
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Interactions of distant mechanoreceptor systems during presentation of non-strain specific acoustic signals to normal and allatectomized male crickets Gryllus bimaculatus].
    Kniazev AN; Ivanov VP; Vorob'eva ON
    Zh Evol Biokhim Fiziol; 2000; 36(5):424-30. PubMed ID: 11190141
    [No Abstract]   [Full Text] [Related]  

  • 35. Ca2+ imaging of cricket protocerebrum responses to air current stimulation.
    Ogawa H; Kajita Y
    Neurosci Lett; 2015 Jan; 584():282-6. PubMed ID: 25450140
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A neuromorphic hair sensor model of wind-mediated escape in the cricket.
    Chapman T; Webb B
    Int J Neural Syst; 1999 Oct; 9(5):397-403. PubMed ID: 10630468
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Antennal pointing at a looming object in the cricket Acheta domesticus.
    Yamawaki Y; Ishibashi W
    J Insect Physiol; 2014 Jan; 60():80-91. PubMed ID: 24287453
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Trade-off between motor performance and behavioural flexibility in the action selection of cricket escape behaviour.
    Sato N; Shidara H; Ogawa H
    Sci Rep; 2019 Dec; 9(1):18112. PubMed ID: 31792301
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Aggressive behavior in the antennectomized male cricket Gryllus bimaculatus.
    Sakura M; Aonuma H
    J Exp Biol; 2013 Jun; 216(Pt 12):2221-8. PubMed ID: 23531830
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wind-evoked evasive responses in flying cockroaches.
    Ganihar D; Libersat F; Wendler G; Cambi JM
    J Comp Physiol A; 1994 Jul; 175(1):49-65. PubMed ID: 8083847
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.