These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 21440014)

  • 1. Functional relevance of pre-supplementary motor areas for the choice to stop during Stop signal task.
    Tabu H; Mima T; Aso T; Takahashi R; Fukuyama H
    Neurosci Res; 2011 Jul; 70(3):277-84. PubMed ID: 21440014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Common inhibitory prefrontal activation during inhibition of hand and foot responses.
    Tabu H; Mima T; Aso T; Takahashi R; Fukuyama H
    Neuroimage; 2012 Feb; 59(4):3373-8. PubMed ID: 22079449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of prepotent responses by the superior medial frontal cortex.
    Chen CY; Muggleton NG; Tzeng OJ; Hung DL; Juan CH
    Neuroimage; 2009 Jan; 44(2):537-45. PubMed ID: 18852054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracerebral ERD/ERS in voluntary movement and in cognitive visuomotor task.
    Rektor I; Sochůrková D; Bocková M
    Prog Brain Res; 2006; 159():311-30. PubMed ID: 17071240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping motor inhibition: conjunctive brain activations across different versions of go/no-go and stop tasks.
    Rubia K; Russell T; Overmeyer S; Brammer MJ; Bullmore ET; Sharma T; Simmons A; Williams SC; Giampietro V; Andrew CM; Taylor E
    Neuroimage; 2001 Feb; 13(2):250-61. PubMed ID: 11162266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Are the neural correlates of stopping and not going identical? Quantitative meta-analysis of two response inhibition tasks.
    Swick D; Ashley V; Turken U
    Neuroimage; 2011 Jun; 56(3):1655-65. PubMed ID: 21376819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stop and go: the neural basis of selective movement prevention.
    Coxon JP; Stinear CM; Byblow WD
    J Cogn Neurosci; 2009 Jun; 21(6):1193-203. PubMed ID: 18702592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural correlates of preparation for action selection as a function of specific task demands.
    Donohue SE; Wendelken C; Bunge SA
    J Cogn Neurosci; 2008 Apr; 20(4):694-706. PubMed ID: 18052782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fear and stop: a role for the amygdala in motor inhibition by emotional signals.
    Sagaspe P; Schwartz S; Vuilleumier P
    Neuroimage; 2011 Apr; 55(4):1825-35. PubMed ID: 21272655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms and dynamics of cortical motor inhibition in the stop-signal paradigm: a TMS study.
    van den Wildenberg WP; Burle B; Vidal F; van der Molen MW; Ridderinkhof KR; Hasbroucq T
    J Cogn Neurosci; 2010 Feb; 22(2):225-39. PubMed ID: 19400674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcranial magnetic stimulation and functional MRI reveal cortical and subcortical interactions during stop-signal response inhibition.
    Zandbelt BB; Bloemendaal M; Hoogendam JM; Kahn RS; Vink M
    J Cogn Neurosci; 2013 Feb; 25(2):157-74. PubMed ID: 23066733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrophysiological activity underlying inhibitory control processes in normal adults.
    Schmajuk M; Liotti M; Busse L; Woldorff MG
    Neuropsychologia; 2006; 44(3):384-95. PubMed ID: 16095637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theta burst magnetic stimulation over the pre-supplementary motor area improves motor inhibition.
    Obeso I; Wilkinson L; Teo JT; Talelli P; Rothwell JC; Jahanshahi M
    Brain Stimul; 2017; 10(5):944-951. PubMed ID: 28624346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reward improves response inhibition by enhancing attentional capture.
    Wang Y; Braver TS; Yin S; Hu X; Wang X; Chen A
    Soc Cogn Affect Neurosci; 2019 Jan; 14(1):35-45. PubMed ID: 30535116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition and the right inferior frontal cortex.
    Aron AR; Robbins TW; Poldrack RA
    Trends Cogn Sci; 2004 Apr; 8(4):170-7. PubMed ID: 15050513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From facial cue to dinner for two: the neural substrates of personal choice.
    Turk DJ; Banfield JF; Walling BR; Heatherton TF; Grafton ST; Handy TC; Gazzaniga MS; Macrae CN
    Neuroimage; 2004 Jul; 22(3):1281-90. PubMed ID: 15219600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The key locus of common response inhibition network for no-go and stop signals.
    Zheng D; Oka T; Bokura H; Yamaguchi S
    J Cogn Neurosci; 2008 Aug; 20(8):1434-42. PubMed ID: 18303978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition-related activation in the right inferior frontal gyrus in the absence of inhibitory cues.
    Lenartowicz A; Verbruggen F; Logan GD; Poldrack RA
    J Cogn Neurosci; 2011 Nov; 23(11):3388-99. PubMed ID: 21452946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rostral premotor cortex as a gateway between motor and cognitive networks.
    Hanakawa T
    Neurosci Res; 2011 Jun; 70(2):144-54. PubMed ID: 21382425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The contribution of mesiofrontal cortex to the preparation and execution of repetitive syllable productions: an fMRI study.
    Brendel B; Hertrich I; Erb M; Lindner A; Riecker A; Grodd W; Ackermann H
    Neuroimage; 2010 Apr; 50(3):1219-30. PubMed ID: 20080191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.