These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 21440441)

  • 41. Angular momentum regulation may dictate the slip severity in young adults.
    Nazifi MM; Beschorner K; Hur P
    PLoS One; 2020; 15(3):e0230019. PubMed ID: 32163463
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Relationship between hamstring activation rate and heel contact velocity: factors influencing age-related slip-induced falls.
    Lockhart TE; Kim S
    Gait Posture; 2006 Aug; 24(1):23-34. PubMed ID: 16112575
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Temporal spatial parameters of gait with barefoot, bathroom slippers and military boots.
    Majumdar D; Banerjee PK; Majumdar D; Pal M; Kumar R; Selvamurthy W
    Indian J Physiol Pharmacol; 2006; 50(1):33-40. PubMed ID: 16850901
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A comparison of foot/ground interaction during stair negotiation and level walking in young and older women.
    Hamel KA; Okita N; Bus SA; Cavanagh PR
    Ergonomics; 2005 Jun; 48(8):1047-56. PubMed ID: 16147420
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Age-related slip avoidance strategy while walking over a known slippery floor surface.
    Lockhart TE; Spaulding JM; Park SH
    Gait Posture; 2007 Jun; 26(1):142-9. PubMed ID: 17023162
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of barefoot habituation in winter on thermal and hormonal responses in young children--a preliminary study.
    Park SJ; Kikufuji N; Hyun KJ; Tokura H
    J Hum Ergol (Tokyo); 2004 Dec; 33(1-2):61-7. PubMed ID: 17402509
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Pedestrians in wintertime-effects of using anti-slip devices.
    Berggård G; Johansson C
    Accid Anal Prev; 2010 Jul; 42(4):1199-204. PubMed ID: 20441832
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of load carrying on required coefficient of friction.
    Seo JS; Kim S
    Technol Health Care; 2019; 27(S1):15-22. PubMed ID: 31045523
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Available friction of ladder shoes and slip potential for climbing on a straight ladder.
    Chang WR; Chang CC; Matz S
    Ergonomics; 2005 Jul; 48(9):1169-82. PubMed ID: 16251154
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effect of two sock fabrics on physiological parameters associated with blister incidence: a laboratory study.
    Bogerd CP; Rechsteiner I; Wüst B; Rossi RM; Brühwiler PA
    Ann Occup Hyg; 2011 Jun; 55(5):510-8. PubMed ID: 21669907
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The effects of 10% front load carriage on the likelihood of slips and falls.
    Kim S; Lockhart TE
    Ind Health; 2008 Jan; 46(1):32-9. PubMed ID: 18270448
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evaluation of the impact of non-slip socks on the motor recovery of elderly people in acute care hospitals: Protocol for a randomized, controlled trial study.
    Rulleau T; Planche L; Dorion A; Soldani G; Blain C; Chapeleau C; Bleher Y; Da Silva C; Launeau N; Joguet E; Fevrier R; Decours R
    PLoS One; 2023; 18(5):e0283226. PubMed ID: 37126507
    [TBL] [Abstract][Full Text] [Related]  

  • 53. "Walking-mode maps" based on slip/non-slip criteria.
    Yamaguchi T; Hokkirigawa K
    Ind Health; 2008 Jan; 46(1):23-31. PubMed ID: 18270447
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Required coefficient of friction during level walking is predictive of slipping.
    Beschorner KE; Albert DL; Redfern MS
    Gait Posture; 2016 Jul; 48():256-260. PubMed ID: 27367937
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Basic gait and symmetry measures for primary school-aged children and young adults whilst walking barefoot and with shoes.
    Lythgo N; Wilson C; Galea M
    Gait Posture; 2009 Nov; 30(4):502-6. PubMed ID: 19692245
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Benefits and risks of non-slip socks in hospitals: a rapid review.
    Jazayeri D; Heng H; Slade SC; Seymour B; Lui R; Volpe D; Jones C; Morris ME
    Int J Qual Health Care; 2021 Apr; 33(2):. PubMed ID: 33755121
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The reliability of spatiotemporal gait data for young and older women during continuous overground walking.
    Paterson KL; Hill KD; Lythgo ND; Maschette W
    Arch Phys Med Rehabil; 2008 Dec; 89(12):2360-5. PubMed ID: 19061748
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of silicon-insole socks on pressure distribution and shear force of the foot.
    Wong PY; Chen MD; Hong WH; Chen HC; Wong MK; Tang FT
    Changgeng Yi Xue Za Zhi; 1998 Mar; 21(1):20-7. PubMed ID: 9607260
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Measurement of slipperiness: fundamental concepts and definitions.
    Grönqvist R; Chang WR; Courtney TK; Leamon TB; Redfern MS; Strandberg L
    Ergonomics; 2001 Oct; 44(13):1102-17. PubMed ID: 11794760
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Method for Accessing the Non-Slip Function of Socks in an Acute Maneuver.
    Seo D; Eun J; Yu Y; Park S; Lee K
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772418
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.