These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 21440751)
1. The influence of tubular phenotypic changes on the development of diffuse interstitial fibrosis in renal allografts. Özdemir BH; Özdemir AA; Colak T; Sezer S; Haberal M Transplant Proc; 2011 Mar; 43(2):527-9. PubMed ID: 21440751 [TBL] [Abstract][Full Text] [Related]
2. Tubular phenotypic change in progressive tubulointerstitial fibrosis in human glomerulonephritis. Jinde K; Nikolic-Paterson DJ; Huang XR; Sakai H; Kurokawa K; Atkins RC; Lan HY Am J Kidney Dis; 2001 Oct; 38(4):761-9. PubMed ID: 11576879 [TBL] [Abstract][Full Text] [Related]
3. Correlative insights into the immunoexpression of transforming growth factor beta-1 in acutely rejected renal allografts. Danilewicz M; Wagrowska-Danilewicz M Pathol Res Pract; 2006; 202(1):9-15. PubMed ID: 16343799 [TBL] [Abstract][Full Text] [Related]
4. Screening of vesicoureteral reflux in pediatric patients with kidney transplantation showing non-specific interstitial fibrosis and tubular atrophy with interstitial Tamm-Horsfall protein deposits in protocol allograft biopsy. Akioka Y; Chikamoto H; Horita S; Yago R; Tanabe K; Yamaguchi Y; Hattori M Clin Transplant; 2009 Aug; 23 Suppl 20():2-5. PubMed ID: 19594587 [TBL] [Abstract][Full Text] [Related]
5. Epithelial-mesenchymal transdifferentiation of renal tubular epithelial cells induced by urinary proteins requires the activation of PKC-α and βI isozymes. Tang R; Yang C; Tao JL; You YK; An N; Li SM; Wu HL; Liu HF Cell Biol Int; 2011 Sep; 35(9):953-9. PubMed ID: 21323641 [TBL] [Abstract][Full Text] [Related]
6. Actin filaments in human renal tubulo-interstitial fibrosis: significance for the concept of epithelial-myofibroblast transformation. Ru Y; Eyden B; Curry A; McWilliam LJ; Coyne JD J Submicrosc Cytol Pathol; 2003 Jul; 35(3):221-33. PubMed ID: 14690170 [TBL] [Abstract][Full Text] [Related]
7. Chronic allograft nephropathy: expression and localization of PAI-1 and PPAR-gamma. Revelo MP; Federspiel C; Helderman H; Fogo AB Nephrol Dial Transplant; 2005 Dec; 20(12):2812-9. PubMed ID: 16221712 [TBL] [Abstract][Full Text] [Related]
8. Rapamycin inhibits PAI-1 expression and reduces interstitial fibrosis and glomerulosclerosis in chronic allograft nephropathy. Pontrelli P; Rossini M; Infante B; Stallone G; Schena A; Loverre A; Ursi M; Verrienti R; Maiorano A; Zaza G; Ranieri E; Gesualdo L; Ditonno P; Bettocchi C; Schena FP; Grandaliano G Transplantation; 2008 Jan; 85(1):125-34. PubMed ID: 18192922 [TBL] [Abstract][Full Text] [Related]
9. The dual role of epithelial-to-mesenchymal transition in chronic allograft injury in pediatric renal transplantation. Vitalone MJ; Naesens M; Sigdel T; Li L; Hseih S; Sarwal MM Transplantation; 2011 Oct; 92(7):787-95. PubMed ID: 21952304 [TBL] [Abstract][Full Text] [Related]
10. The role of tubular epithelial-mesenchymal transition in progressive kidney disease. Burns WC; Kantharidis P; Thomas MC Cells Tissues Organs; 2007; 185(1-3):222-31. PubMed ID: 17587828 [TBL] [Abstract][Full Text] [Related]
11. Pathogenesis of tubulointerstitial fibrosis in chronic allograft dysfunction. Strutz F Clin Transplant; 2009 Dec; 23 Suppl 21():26-32. PubMed ID: 19930313 [TBL] [Abstract][Full Text] [Related]
12. Hepatic stellate cells in hepatitis C patients: relationship with the development of interstitial fibrosis in renal allografts. Ozdemir BH; Bilezikçi B; Haberal M Transplant Proc; 2009 Sep; 41(7):2838-40. PubMed ID: 19765451 [TBL] [Abstract][Full Text] [Related]
13. A morphometric insight into glomerular and interstitial lesions in acutely rejected renal allografts. Danilewicz M; Wagrowska-Danilewicz M Pol J Pathol; 2003; 54(3):171-7. PubMed ID: 14703283 [TBL] [Abstract][Full Text] [Related]
14. Can histopathological findings in early renal allograft biopsies identify patients at risk for chronic vascular rejection? Dimény E; Wahlberg J; Larsson E; Fellström B Clin Transplant; 1995 Apr; 9(2):79-84. PubMed ID: 7599406 [TBL] [Abstract][Full Text] [Related]
15. Microchimerism in renal allografts: clinicopathological associations according to the type of chimeric cells. Ferlicot S; Vernochet A; Romana S; Ortin-Serrano M; Letierce A; Brégerie O; Durrbach A; Guettier C Histopathology; 2010 Jan; 56(2):188-97. PubMed ID: 20102397 [TBL] [Abstract][Full Text] [Related]
16. Epithelial phenotypic changes are associated with a tubular active fibrogenic process in human renal grafts. Xu-Dubois YC; Baugey E; Peltier J; Colombat M; Ouali N; Jouanneau C; Rondeau E; Hertig A Hum Pathol; 2013 Jul; 44(7):1251-61. PubMed ID: 23332931 [TBL] [Abstract][Full Text] [Related]
17. WT1 and Pax2 re-expression is required for epithelial-mesenchymal transition in 5/6 nephrectomized rats and cultured kidney tubular epithelial cells. Huang B; Pi L; Chen C; Yuan F; Zhou Q; Teng J; Jiang T Cells Tissues Organs; 2012; 195(4):296-312. PubMed ID: 21778682 [TBL] [Abstract][Full Text] [Related]
18. Gremlin: a novel mediator of epithelial mesenchymal transition and fibrosis in chronic allograft nephropathy. Carvajal G; Droguett A; Burgos ME; Aros C; Ardiles L; Flores C; Carpio D; Ruiz-Ortega M; Egido J; Mezzano S Transplant Proc; 2008 Apr; 40(3):734-9. PubMed ID: 18455002 [TBL] [Abstract][Full Text] [Related]
19. Epithelial-mesenchymal transition and its implications for the development of renal tubulointerstitial fibrosis. Rastaldi MP J Nephrol; 2006; 19(4):407-12. PubMed ID: 17048197 [TBL] [Abstract][Full Text] [Related]
20. Intragraft tubular vimentin and CD44 expression correlate with long-term renal allograft function and interstitial fibrosis and tubular atrophy. Kers J; Xu-Dubois YC; Rondeau E; Claessen N; Idu MM; Roelofs JJ; Bemelman FJ; ten Berge IJ; Florquin S Transplantation; 2010 Sep; 90(5):502-9. PubMed ID: 20588206 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]