BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 21440928)

  • 1. The effect of phosphate application on the mobility of antimony in firing range soils.
    Griggs CS; Martin WA; Larson SL; O'Connnor G; Fabian G; Zynda G; Mackie D
    Sci Total Environ; 2011 May; 409(12):2397-403. PubMed ID: 21440928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential negative consequences of adding phosphorus-based fertilizers to immobilize lead in soil.
    Kilgour DW; Moseley RB; Barnett MO; Savage KS; Jardine PM
    J Environ Qual; 2008; 37(5):1733-40. PubMed ID: 18689734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antimony migration trends from a small arms firing range compared to lead, copper, and zinc.
    Martin WA; Lee LS; Schwab P
    Sci Total Environ; 2013 Oct; 463-464():222-8. PubMed ID: 23810861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative value of phosphate sources on the immobilization of lead, and leaching of lead and phosphorus in lead contaminated soils.
    Park JH; Bolan N; Megharaj M; Naidu R
    Sci Total Environ; 2011 Jan; 409(4):853-60. PubMed ID: 21130488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trace metal stabilisation in a shooting range soil: mobility and phytotoxicity.
    Spuller C; Weigand H; Marb C
    J Hazard Mater; 2007 Mar; 141(2):378-87. PubMed ID: 16842912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphate application to firing range soils for Pb immobilization: the unclear role of phosphate.
    Chrysochoou M; Dermatas D; Grubb DG
    J Hazard Mater; 2007 Jun; 144(1-2):1-14. PubMed ID: 17360110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Speciation and phytoavailability of lead and antimony in a small arms range soil amended with mussel shell, cow bone and biochar: EXAFS spectroscopy and chemical extractions.
    Ahmad M; Lee SS; Lim JE; Lee SE; Cho JS; Moon DH; Hashimoto Y; Ok YS
    Chemosphere; 2014 Jan; 95():433-41. PubMed ID: 24183621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antimony (Sb) contaminated shooting range soil: Sb mobility and immobilization by soil amendments.
    Okkenhaug G; Amstätter K; Lassen Bue H; Cornelissen G; Breedveld GD; Henriksen T; Mulder J
    Environ Sci Technol; 2013 Jun; 47(12):6431-9. PubMed ID: 23668960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution, chemical speciation, and mobility of lead and antimony originating from small arms ammunition in a coarse-grained unsaturated surface sand.
    Lewis J; Sjöström J; Skyllberg U; Hägglund L
    J Environ Qual; 2010; 39(3):863-70. PubMed ID: 20400582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced transformation of lead speciation in rhizosphere soils using phosphorus amendments and phytostabilization: an x-ray absorption fine structure spectroscopy investigation.
    Hashimoto Y; Takaoka M; Shiota K
    J Environ Qual; 2011; 40(3):696-703. PubMed ID: 21546656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antimony mobility in Japanese agricultural soils and the factors affecting antimony sorption behavior.
    Nakamaru Y; Tagami K; Uchida S
    Environ Pollut; 2006 May; 141(2):321-6. PubMed ID: 16246477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An investigation of inorganic antimony species and antimony associated with soil humic acid molar mass fractions in contaminated soils.
    Steely S; Amarasiriwardena D; Xing B
    Environ Pollut; 2007 Jul; 148(2):590-8. PubMed ID: 17258851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental monitoring of the role of phosphate compounds in enhancing immobilization and reducing bioavailability of lead in contaminated soils.
    Park JH; Bolan NS; Chung JW; Naidu R; Megharaj M
    J Environ Monit; 2011 Aug; 13(8):2234-42. PubMed ID: 21748178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in Sb speciation with waterlogging of shooting range soils and impacts on plant uptake.
    Wan XM; Tandy S; Hockmann K; Schulin R
    Environ Pollut; 2013 Jan; 172():53-60. PubMed ID: 22982553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solubility of antimony and other elements in samples taken from shooting ranges.
    Johnson CA; Moench H; Wersin P; Kugler P; Wenger C
    J Environ Qual; 2005; 34(1):248-54. PubMed ID: 15647555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Migration and leaching risk of extraneous antimony in three representative soils of China: lysimeter and batch experiments.
    Hou H; Yao N; Li JN; Wei Y; Zhao L; Zhang J; Li FS
    Chemosphere; 2013 Nov; 93(9):1980-8. PubMed ID: 23931906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sorption of dissolved lead from shooting range soils using hydroxyapatite amendments synthesized from industrial byproducts as affected by varying pH conditions.
    Hashimoto Y; Taki T; Sato T
    J Environ Manage; 2009 Apr; 90(5):1782-9. PubMed ID: 19111967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of antimony(V) by floodplain soils, amorphous iron(III) hydroxide and humic acid.
    Tighe M; Lockwood P; Wilson S
    J Environ Monit; 2005 Dec; 7(12):1177-85. PubMed ID: 16307069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antimony sorption at gibbsite-water interface.
    Rakshit S; Sarkar D; Punamiya P; Datta R
    Chemosphere; 2011 Jul; 84(4):480-3. PubMed ID: 21481912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Concurrent sorption of antimony and lead by iron phosphate and its possible application for multi-oxyanion contaminated soil.
    Kim HN; Park JH
    Environ Sci Pollut Res Int; 2023 Feb; 30(9):22835-22842. PubMed ID: 36308659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.