These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

370 related articles for article (PubMed ID: 21441300)

  • 21. Constant volume of the human lens and decrease in surface area of the capsular bag during accommodation: an MRI and Scheimpflug study.
    Hermans EA; Pouwels PJ; Dubbelman M; Kuijer JP; van der Heijde RG; Heethaar RM
    Invest Ophthalmol Vis Sci; 2009 Jan; 50(1):281-9. PubMed ID: 18676625
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ocular anterior segment biometry and high-order wavefront aberrations during accommodation.
    Yuan Y; Shao Y; Tao A; Shen M; Wang J; Shi G; Chen Q; Zhu D; Lian Y; Qu J; Zhang Y; Lu F
    Invest Ophthalmol Vis Sci; 2013 Oct; 54(10):7028-37. PubMed ID: 24065809
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Slit-lamp studies of the rhesus monkey eye: II. Changes in crystalline lens shape, thickness and position during accommodation and aging.
    Koretz JF; Bertasso AM; Neider MW; True-Gabelt BA; Kaufman PL
    Exp Eye Res; 1987 Aug; 45(2):317-26. PubMed ID: 3653294
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Three-dimensional magnetic resonance imaging of the phakic crystalline lens during accommodation.
    Sheppard AL; Evans CJ; Singh KD; Wolffsohn JS; Dunne MC; Davies LN
    Invest Ophthalmol Vis Sci; 2011 Jun; 52(6):3689-97. PubMed ID: 21296812
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accommodation of an endocapsular silicone lens (Phaco-Ersatz) in the aging rhesus monkey.
    Haefliger E; Parel JM
    J Refract Corneal Surg; 1994; 10(5):550-5. PubMed ID: 7530105
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vitro dimensions and curvatures of human lenses.
    Rosen AM; Denham DB; Fernandez V; Borja D; Ho A; Manns F; Parel JM; Augusteyn RC
    Vision Res; 2006 Mar; 46(6-7):1002-9. PubMed ID: 16321421
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultrasound biomicroscopy of anterior segment accommodative changes with posterior chamber phakic intraocular lens in high myopia.
    Du C; Wang J; Wang X; Dong Y; Gu Y; Shen Y
    Ophthalmology; 2012 Jan; 119(1):99-105. PubMed ID: 21978592
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Magnetic resonance imaging of the anteroposterior position and thickness of the aging, accommodating, phakic, and pseudophakic ciliary muscle.
    Strenk SA; Strenk LM; Guo S
    J Cataract Refract Surg; 2010 Feb; 36(2):235-41. PubMed ID: 20152603
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Changes in equivalent and gradient refractive index of the crystalline lens with accommodation.
    Garner LF; Smith G
    Optom Vis Sci; 1997 Feb; 74(2):114-9. PubMed ID: 9097329
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Presbyopia, accommodation, and the mature catenary.
    Coleman DJ; Fish SK
    Ophthalmology; 2001 Sep; 108(9):1544-51. PubMed ID: 11535447
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A quantitative geometric mechanics lens model: insights into the mechanisms of accommodation and presbyopia.
    Reilly MA
    Vision Res; 2014 Oct; 103():20-31. PubMed ID: 25130408
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Anterior segment changes with age and during accommodation measured with partial coherence interferometry.
    Tsorbatzoglou A; Németh G; Széll N; Biró Z; Berta A
    J Cataract Refract Surg; 2007 Sep; 33(9):1597-601. PubMed ID: 17720076
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Age-related changes in centripetal ciliary body movement relative to centripetal lens movement in monkeys.
    Croft MA; McDonald JP; Nadkarni NV; Lin TL; Kaufman PL
    Exp Eye Res; 2009 Dec; 89(6):824-32. PubMed ID: 19635475
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessing accommodative presbyopic biometric changes of the entire anterior segment using single swept-source OCT image acquisitions.
    Xie X; Sultan W; Corradetti G; Lee JY; Song A; Pardeshi A; Yu F; Chopra V; Sadda SR; Xu BY; Huang AS
    Eye (Lond); 2022 Jan; 36(1):119-128. PubMed ID: 33633350
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of pilocarpine-induced and stimulus-driven accommodation in phakic eyes.
    Koeppl C; Findl O; Kriechbaum K; Drexler W
    Exp Eye Res; 2005 Jun; 80(6):795-800. PubMed ID: 15939035
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Aging changes in ocular tissues and their influences on accommodative functions].
    Nishida S
    Nippon Ganka Gakkai Zasshi; 1990 Feb; 94(2):93-119. PubMed ID: 2114735
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of accommodation and pupil size on the movement of a posterior chamber lens in the phakic eye.
    Petternel V; Köppl CM; Dejaco-Ruhswurm I; Findl O; Skorpik C; Drexler W
    Ophthalmology; 2004 Feb; 111(2):325-31. PubMed ID: 15019383
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Experimental protocols for ex vivo lens stretching tests to investigate the biomechanics of the human accommodation apparatus.
    Pinilla Cortés L; Burd HJ; Montenegro GA; D'Antin JC; Mikielewicz M; Barraquer RI; Michael R
    Invest Ophthalmol Vis Sci; 2015 May; 56(5):2926-32. PubMed ID: 26024078
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Anatomical, morphological and biomechanical aspects of accommodation].
    Avetisov SE; Shitikova AV; Avetisov KS
    Vestn Oftalmol; 2022; 138(4):117-125. PubMed ID: 36004600
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Accommodation and presbyopia.
    Atchison DA
    Ophthalmic Physiol Opt; 1995 Jul; 15(4):255-72. PubMed ID: 7667018
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.