These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
362 related articles for article (PubMed ID: 21441355)
1. Detection of common single nucleotide polymorphisms synthesizing quantitative trait association of rarer causal variants. Takeuchi F; Kobayashi S; Ogihara T; Fujioka A; Kato N Genome Res; 2011 Jul; 21(7):1122-30. PubMed ID: 21441355 [TBL] [Abstract][Full Text] [Related]
2. Predicting signatures of "synthetic associations" and "natural associations" from empirical patterns of human genetic variation. Chang D; Keinan A PLoS Comput Biol; 2012; 8(7):e1002600. PubMed ID: 22792059 [TBL] [Abstract][Full Text] [Related]
3. Allelic heterogeneity and more detailed analyses of known loci explain additional phenotypic variation and reveal complex patterns of association. Wood AR; Hernandez DG; Nalls MA; Yaghootkar H; Gibbs JR; Harries LW; Chong S; Moore M; Weedon MN; Guralnik JM; Bandinelli S; Murray A; Ferrucci L; Singleton AB; Melzer D; Frayling TM Hum Mol Genet; 2011 Oct; 20(20):4082-92. PubMed ID: 21798870 [TBL] [Abstract][Full Text] [Related]
4. Quantifying the mapping precision of genome-wide association studies using whole-genome sequencing data. Wu Y; Zheng Z; Visscher PM; Yang J Genome Biol; 2017 May; 18(1):86. PubMed ID: 28506277 [TBL] [Abstract][Full Text] [Related]
5. Significance Testing for Allelic Heterogeneity. Deng Y; Pan W Genetics; 2018 Sep; 210(1):25-32. PubMed ID: 29959179 [TBL] [Abstract][Full Text] [Related]
6. Fine mapping by composite genome-wide association analysis. Casellas J; Cañas-Álvarez JJ; Fina M; Piedrafita J; Cecchinato A Genet Res (Camb); 2017 Jun; 99():e4. PubMed ID: 28583209 [TBL] [Abstract][Full Text] [Related]
7. In search of causal variants: refining disease association signals using cross-population contrasts. Saccone NL; Saccone SF; Goate AM; Grucza RA; Hinrichs AL; Rice JP; Bierut LJ BMC Genet; 2008 Aug; 9():58. PubMed ID: 18759969 [TBL] [Abstract][Full Text] [Related]
8. Detecting low frequent loss-of-function alleles in genome wide association studies with red hair color as example. Liu F; Struchalin MV; Duijn Kv; Hofman A; Uitterlinden AG; Duijn Cv; Aulchenko YS; Kayser M PLoS One; 2011; 6(11):e28145. PubMed ID: 22140526 [TBL] [Abstract][Full Text] [Related]
9. Bivariate association analysis for quantitative traits using generalized estimation equation. Yang F; Tang Z; Deng H J Genet Genomics; 2009 Dec; 36(12):733-43. PubMed ID: 20129400 [TBL] [Abstract][Full Text] [Related]
10. Genome-wide association study for endocrine fertility traits using single nucleotide polymorphism arrays and sequence variants in dairy cattle. Tenghe AMM; Bouwman AC; Berglund B; Strandberg E; de Koning DJ; Veerkamp RF J Dairy Sci; 2016 Jul; 99(7):5470-5485. PubMed ID: 27157577 [TBL] [Abstract][Full Text] [Related]
11. Simulating autosomal genotypes with realistic linkage disequilibrium and a spiked-in genetic effect. Shi M; Umbach DM; Wise AS; Weinberg CR BMC Bioinformatics; 2018 Jan; 19(1):2. PubMed ID: 29291710 [TBL] [Abstract][Full Text] [Related]
12. The Multi-allelic Genetic Architecture of a Variance-Heterogeneity Locus for Molybdenum Concentration in Leaves Acts as a Source of Unexplained Additive Genetic Variance. Forsberg SK; Andreatta ME; Huang XY; Danku J; Salt DE; Carlborg Ö PLoS Genet; 2015 Nov; 11(11):e1005648. PubMed ID: 26599497 [TBL] [Abstract][Full Text] [Related]
13. Enhancing the power to detect low-frequency variants in genome-wide screens. Lin CY; Xing G; Ku HC; Elston RC; Xing C Genetics; 2014 Apr; 196(4):1293-302. PubMed ID: 24496013 [TBL] [Abstract][Full Text] [Related]
14. Accurate prediction of a minimal region around a genetic association signal that contains the causal variant. Bochdanovits Z; Simón-Sánchez J; Jonker M; Hoogendijk WJ; van der Vaart A; Heutink P Eur J Hum Genet; 2014 Feb; 22(2):238-42. PubMed ID: 23736218 [TBL] [Abstract][Full Text] [Related]
15. Evaluation and application of summary statistic imputation to discover new height-associated loci. Rüeger S; McDaid A; Kutalik Z PLoS Genet; 2018 May; 14(5):e1007371. PubMed ID: 29782485 [TBL] [Abstract][Full Text] [Related]
17. A unified approach for allele frequency estimation, SNP detection and association studies based on pooled sequencing data using EM algorithms. Chen Q; Sun F BMC Genomics; 2013; 14 Suppl 1(Suppl 1):S1. PubMed ID: 23369070 [TBL] [Abstract][Full Text] [Related]
18. Comparing the efficacy of SNP filtering methods for identifying a single causal SNP in a known association region. Spencer AV; Cox A; Walters K Ann Hum Genet; 2014 Jan; 78(1):50-61. PubMed ID: 24205929 [TBL] [Abstract][Full Text] [Related]
19. Where is the causal variant? On the advantage of the family design over the case-control design in genetic association studies. Dandine-Roulland C; Perdry H Eur J Hum Genet; 2015 Oct; 23(10):1357-63. PubMed ID: 25585700 [TBL] [Abstract][Full Text] [Related]
20. Selecting Closely-Linked SNPs Based on Local Epistatic Effects for Haplotype Construction Improves Power of Association Mapping. Liu F; Schmidt RH; Reif JC; Jiang Y G3 (Bethesda); 2019 Dec; 9(12):4115-4126. PubMed ID: 31604824 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]