These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 21441654)

  • 1. Terahertz surface plasmons in optically pumped graphene structures.
    Dubinov AA; Aleshkin VY; Mitin V; Otsuji T; Ryzhii V
    J Phys Condens Matter; 2011 Apr; 23(14):145302. PubMed ID: 21441654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carrier-carrier scattering and negative dynamic conductivity in pumped graphene.
    Svintsov D; Ryzhii V; Satou A; Otsuji T; Vyurkov V
    Opt Express; 2014 Aug; 22(17):19873-86. PubMed ID: 25321198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards loss compensated and lasing terahertz metamaterials based on optically pumped graphene.
    Weis P; Garcia-Pomar JL; Rahm M
    Opt Express; 2014 Apr; 22(7):8473-89. PubMed ID: 24718220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Terahertz photonic states in semiconductor-graphene cylinder structures.
    Yuan Y; Yao J; Xu W
    Opt Lett; 2012 Mar; 37(5):960-2. PubMed ID: 22378452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Double-graphene-layer terahertz laser: concept, characteristics, and comparison.
    Ryzhii V; Dubinov AA; Otsuji T; Aleshkin VY; Ryzhii M; Shur M
    Opt Express; 2013 Dec; 21(25):31567-77. PubMed ID: 24514730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Terahertz amplification and lasing by using transverse electric modes in a two-layer-graphene-dielectric waveguide structure with direct current.
    Moiseenko IM; Popov VV; Fateev DV
    J Phys Condens Matter; 2023 Apr; 35(25):. PubMed ID: 36963112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of graphene TE surface plasmons in the terahertz regime.
    He XY; Tao J; Meng B
    Nanotechnology; 2013 Aug; 24(34):345203. PubMed ID: 23912303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmon enhanced terahertz emission from single layer graphene.
    Bahk YM; Ramakrishnan G; Choi J; Song H; Choi G; Kim YH; Ahn KJ; Kim DS; Planken PC
    ACS Nano; 2014 Sep; 8(9):9089-96. PubMed ID: 25137623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Terahertz imaging and spectroscopy of large-area single-layer graphene.
    Tomaino JL; Jameson AD; Kevek JW; Paul MJ; van der Zande AM; Barton RA; McEuen PL; Minot ED; Lee YS
    Opt Express; 2011 Jan; 19(1):141-6. PubMed ID: 21263550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Absolute distance measurement of optically rough objects using asynchronous-optical-sampling terahertz impulse ranging.
    Yasui T; Kabetani Y; Ohgi Y; Yokoyama S; Araki T
    Appl Opt; 2010 Oct; 49(28):5262-70. PubMed ID: 20885461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coherent electro-optical detection of terahertz radiation from an optical parametric oscillator.
    Meng FZ; Thomson MD; Molter D; Löffler T; Jonuscheit J; Beigang R; Bartschke J; Bauer T; Nittmann M; Roskos HG
    Opt Express; 2010 May; 18(11):11316-26. PubMed ID: 20588993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stacking-dependent optical conductivity of bilayer graphene.
    Wang Y; Ni Z; Liu L; Liu Y; Cong C; Yu T; Wang X; Shen D; Shen Z
    ACS Nano; 2010 Jul; 4(7):4074-80. PubMed ID: 20518519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Terahertz Amplification Based on Photo-Excited Graphene-Dielectric Hybrid Metasurface.
    Guan S; Cheng J; Chen T; Chang S
    Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33297545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compact terahertz harmonic generation in the Reststrahlenband using a graphene-embedded metallic split ring resonator array.
    Di Gaspare A; Song C; Schiattarella C; Li LH; Salih M; Giles Davies A; Linfield EH; Zhang J; Balci O; Ferrari AC; Dhillon S; Vitiello MS
    Nat Commun; 2024 Mar; 15(1):2312. PubMed ID: 38485950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy.
    Alonso-González P; Nikitin AY; Gao Y; Woessner A; Lundeberg MB; Principi A; Forcellini N; Yan W; Vélez S; Huber AJ; Watanabe K; Taniguchi T; Casanova F; Hueso LE; Polini M; Hone J; Koppens FH; Hillenbrand R
    Nat Nanotechnol; 2017 Jan; 12(1):31-35. PubMed ID: 27775727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrically controllable active plasmonic directional coupler of terahertz signal based on a periodical dual grating gate graphene structure.
    Morozov MY; Popov VV; Fateev DV
    Sci Rep; 2021 Jun; 11(1):11431. PubMed ID: 34075117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unfolding the damping behavior of multilayer graphene membrane in the low-frequency regime.
    Lahiri D; Das S; Choi W; Agarwal A
    ACS Nano; 2012 May; 6(5):3992-4000. PubMed ID: 22519730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution.
    Seidel J; Grafström S; Eng L
    Phys Rev Lett; 2005 May; 94(17):177401. PubMed ID: 15904333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable THz absorption in graphene-based heterostructures.
    Deng XH; Liu JT; Yuan J; Wang TB; Liu NH
    Opt Express; 2014 Dec; 22(24):30177-83. PubMed ID: 25606948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broadband Tunable THz Absorption with Singular Graphene Metasurfaces.
    Galiffi E; Pendry JB; Huidobro PA
    ACS Nano; 2018 Feb; 12(2):1006-1013. PubMed ID: 29323475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.