These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 214420)

  • 1. Catabolite-repression-like phenomenon in Rhizobium meliloti.
    Ucker DS; Signer ER
    J Bacteriol; 1978 Dec; 136(3):1197-200. PubMed ID: 214420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of lac operon expression: reappraisal of the theory of catabolite repression.
    Wanner BL; Kodaira R; Neidhardt FC
    J Bacteriol; 1978 Dec; 136(3):947-54. PubMed ID: 214424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of aerobic and anaerobic shock on catabolite repression in cyclic AMP suppressor mutants of Escherichia coli.
    Lee JH; Dobrogosz WJ
    J Bacteriol; 1983 May; 154(2):992-4. PubMed ID: 6302089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-induction of beta-galactosidase and the lactose-P-enolpyruvate phosphotransferase system in Streptococcus salivarius and Streptococcus mutans.
    Hamilton IR; Lo GC
    J Bacteriol; 1978 Dec; 136(3):900-8. PubMed ID: 214423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Demonstration of 2 enzymes with beta-galactosidase activity in Rhizobium meliloti].
    Niel C; Guillaume JB; Bechet M
    Can J Microbiol; 1977 Sep; 23(9):1178-81. PubMed ID: 409467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catabolite repression in Streptomyces venezuelae. Induction of beta-galactosidase, chloramphenicol production, and intracellular cyclic adenosine 3',5'-monophosphate concentrations.
    Chatterjee S; Vining LC
    Can J Microbiol; 1982 Mar; 28(3):311-7. PubMed ID: 6282428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of inducer accumulation plays a key role in succinate-mediated catabolite repression in Sinorhizobium meliloti.
    Bringhurst RM; Gage DJ
    J Bacteriol; 2002 Oct; 184(19):5385-92. PubMed ID: 12218025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transient repression of the lac operon.
    Tyler B; Loomis WF; Magasanik B
    J Bacteriol; 1967 Dec; 94(6):2001-11. PubMed ID: 4864411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyclic 3',5'-adenosine monophosphate and N-acetylglucosamine-6-phosphate as regulatory signals in catabolite repression of the lac operon in Escherichia coli.
    Goldenbaum PE; Broman RL; Dobrogosz WJ
    J Bacteriol; 1970 Sep; 103(3):663-70. PubMed ID: 4319836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transient repression of catabolite-sensitive enzyme synthesis elicited by 2,4-dinitrophenol.
    Oki R
    J Bacteriol; 1975 Sep; 123(3):815-23. PubMed ID: 169228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catabolite modulator factor: physiological properties and in vivo effects.
    Dessein A; Tillier F; Ullmann A
    Mol Gen Genet; 1978 Jun; 162(1):89-94. PubMed ID: 209310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of cyclic 3',5'-AMP on catabolite repression of beta-galactosidase synthesis in Escherichia coli.
    Goldenbaum PE; Dobrogosz WJ
    Biochem Biophys Res Commun; 1968 Dec; 33(5):828-33. PubMed ID: 4301980
    [No Abstract]   [Full Text] [Related]  

  • 13. Catabolite repression and role of cyclic AMP in CO2 fixation and H2 metabolism in Rhizobium spp.
    McGetrick AM; Goulding CF; Manian SS; O'Gara F
    J Bacteriol; 1985 Sep; 163(3):1282-4. PubMed ID: 2993243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The synthesis of beta-galactosidase by constitutive and other regulatory mutants of Escherichia coli in chemostat culture.
    Macleod CJ; Dunnill P; Lilly MD
    J Gen Microbiol; 1975 Aug; 89(2):221-8. PubMed ID: 170362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological studies of beta-galactosidase induction in Kluyveromyces lactis.
    Dickson RC; Markin JS
    J Bacteriol; 1980 Jun; 142(3):777-85. PubMed ID: 6769910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic characterization of a Rhizobium meliloti lactose utilization locus.
    Jelesko JG; Leigh JA
    Mol Microbiol; 1994 Jan; 11(1):165-73. PubMed ID: 8145640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The step sensitive to catabolite repression and its reversal by 3'-5' cyclic AMP during induced synthesis of beta-galactosidase in E. coli.
    Jacquet M; Kepes A
    Biochem Biophys Res Commun; 1969 Jul; 36(1):84-92. PubMed ID: 4307746
    [No Abstract]   [Full Text] [Related]  

  • 18. Transient repression of beta-galactosidase synthesis by glucose-6-phosphate in a mutant of Escherichia coli lacking enzyme II specific for glucose in the phosphoenolpyruvate-sugar phosphotransferase system.
    Kanazawa H; Anraku Y
    J Biochem; 1978 May; 83(5):1337-43. PubMed ID: 207684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon metabolism and catabolite repression in Rhizobium spp.
    O'Gara F; Birkenhead K; Boesten B; Fitzmaurice AM
    FEMS Microbiol Rev; 1989 Jun; 5(1-2):93-101. PubMed ID: 2561263
    [No Abstract]   [Full Text] [Related]  

  • 20. Accumulation of untranslated lactose-specific messenger ribonucleic acid during catabolite repression in Escherichia coli.
    Aboud M; Burger M
    Biochem J; 1971 Apr; 122(2):219-24. PubMed ID: 4330149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.