These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 21442048)

  • 1. Optofluidic waveguides: I. Concepts and implementations.
    Schmidt H; Hawkins AR
    Microfluid Nanofluidics; 2008 Jan; 4(1-2):3-16. PubMed ID: 21442048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Liquid Core ARROW Waveguides: A Promising Photonic Structure for Integrated Optofluidic Microsensors.
    Testa G; Persichetti G; Bernini R
    Micromachines (Basel); 2016 Mar; 7(3):. PubMed ID: 30407419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Planar Optofluidic Integration of Ring Resonator and Microfluidic Channels.
    Testa G; Persichetti G; Bernini R
    Micromachines (Basel); 2022 Jun; 13(7):. PubMed ID: 35888845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Free-Space Excitation of Optofluidic Devices for Pattern-Based Single Particle Detection.
    Amin MN; Ganjalizadeh V; Hamblin M; Hawkins AR; Schmidt H
    IEEE Photonics Technol Lett; 2021 Aug; 33(16):884-887. PubMed ID: 34744399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optofluidic devices with integrated solid-state nanopores.
    Liu S; Hawkins AR; Schmidt H
    Mikrochim Acta; 2016 Apr; 183(4):1275-1287. PubMed ID: 27046940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Planar optofluidic chip for single particle detection, manipulation, and analysis.
    Yin D; Lunt EJ; Rudenko MI; Deamer DW; Hawkins AR; Schmidt H
    Lab Chip; 2007 Sep; 7(9):1171-5. PubMed ID: 17713616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-molecule detection sensitivity using planar integrated optics on a chip.
    Yin D; Deamer DW; Schmidt H; Barber JP; Hawkins AR
    Opt Lett; 2006 Jul; 31(14):2136-8. PubMed ID: 16794704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimized ARROW-Based MMI Waveguides for High Fidelity Excitation Patterns for Optofluidic Multiplexing.
    Stott MA; Ganjalizadeh V; Olsen M; Orfila M; McMurray J; Schmidt H; Hawkins AR
    IEEE J Quantum Electron; 2018 Jun; 54(3):. PubMed ID: 29657333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of ARROW Photonic Device Performance via Thermal Annealing of PECVD-based SiO
    Parks JW; Wall TA; Cai H; Hawkins AR; Schmidt H
    IEEE J Sel Top Quantum Electron; 2016; 22(6):. PubMed ID: 27547024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Greatly Enhanced Single Particle Fluorescence Detection Using High Refractive Index Liquid-Core Waveguides.
    Meena GG; Wright JG; Hawkins AR; Schmidt H
    IEEE J Sel Top Quantum Electron; 2021; 27(5):. PubMed ID: 33994767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced Detection of Single Viruses On-Chip via Hydrodynamic Focusing.
    Black JA; Hamilton E; Hueros RAR; Parks JW; Hawkins AR; Schmidt H
    IEEE J Sel Top Quantum Electron; 2019; 25(1):. PubMed ID: 30686911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optofluidic notch filter integration by lift-off of thin films.
    Phillips BS; Measor P; Zhao Y; Schmidt H; Hawkins AR
    Opt Express; 2010 Mar; 18(5):4790-5. PubMed ID: 20389492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Signal-to-noise Enhancement in Optical Detection of Single Viruses with Multi-spot Excitation.
    Ozcelik D; Stott MA; Parks JW; Black JA; Wall TA; Hawkins AR; Schmidt H
    IEEE J Sel Top Quantum Electron; 2016; 22(4):. PubMed ID: 27524876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid optofluidic integration.
    Parks JW; Cai H; Zempoaltecatl L; Yuzvinsky TD; Leake K; Hawkins AR; Schmidt H
    Lab Chip; 2013 Oct; 13(20):4118-23. PubMed ID: 23969694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optofluidic Tweezers: Efficient and Versatile Micro/Nano-Manipulation Tools.
    Zhu Y; You M; Shi Y; Huang H; Wei Z; He T; Xiong S; Wang Z; Cheng X
    Micromachines (Basel); 2023 Jun; 14(7):. PubMed ID: 37512637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optofluidic waveguides: II. Fabrication and structures.
    Hawkins AR; Schmidt H
    Microfluid Nanofluidics; 2007 Jul; 4(1-2):17-32. PubMed ID: 21603122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optofluidic Lab-on-a-Chip Fluorescence Sensor Using Integrated Buried ARROW (bARROW) Waveguides.
    Wall T; McMurray J; Meena G; Ganjalizadeh V; Schmidt H; Hawkins AR
    Micromachines (Basel); 2017 Aug; 8(8):. PubMed ID: 29201455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of optical components on-chip for scattering and fluorescence detection in an optofluidic device.
    Watts BR; Zhang Z; Xu CQ; Cao X; Lin M
    Biomed Opt Express; 2012 Nov; 3(11):2784-93. PubMed ID: 23162718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical-assisted femtosecond laser writing of lab-in-fibers.
    Haque M; Lee KK; Ho S; Fernandes LA; Herman PR
    Lab Chip; 2014 Oct; 14(19):3817-29. PubMed ID: 25120138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fiber optofluidic Coriolis flowmeter based on a dual-antiresonant reflecting optical waveguide.
    Li Z; Gao R; Xin X; Zhang H; Chang H; Guo D; Wang F; Zhou S; Yu C; Liu X
    Opt Lett; 2022 Jul; 47(13):3259-3262. PubMed ID: 35776600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.