BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 21442213)

  • 1. Identification of triclosan intermediates produced by oxidative degradation using TiO2 in pure water and their endocrine disrupting activities.
    Sankoda K; Matsuo H; Ito M; Nomiyama K; Arizono K; Shinohara R
    Bull Environ Contam Toxicol; 2011 May; 86(5):470-5. PubMed ID: 21442213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endocrine effects generated by photooxidation of coplanar biphenyls in water using titanium dioxide.
    Nomiyama K; Tanizaki T; Arizono K; Shinohara R
    Chemosphere; 2007 Jan; 66(6):1138-45. PubMed ID: 16857235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photocatalytic oxidation of triclosan.
    Yu JC; Kwong TY; Luo Q; Cai Z
    Chemosphere; 2006 Oct; 65(3):390-9. PubMed ID: 16571361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative removal of selected endocrine-disruptors and pharmaceuticals in drinking water treatment systems, and identification of degradation products of triclosan.
    Wu Q; Shi H; Adams CD; Timmons T; Ma Y
    Sci Total Environ; 2012 Nov; 439():18-25. PubMed ID: 23059968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical enhancement of solar photocatalysis: degradation of endocrine disruptor bisphenol-A on Ti/TiO2 films.
    Frontistis Z; Daskalaki VM; Katsaounis A; Poulios I; Mantzavinos D
    Water Res; 2011 Apr; 45(9):2996-3004. PubMed ID: 21458019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative degradation of BPA using TiO2 in water, and transition of estrogenic activity in the degradation pathways.
    Nomiyama K; Tanizaki T; Koga T; Arizono K; Shinohara R
    Arch Environ Contam Toxicol; 2007 Jan; 52(1):8-15. PubMed ID: 17031755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ozonation products of triclosan in advanced wastewater treatment.
    Chen X; Richard J; Liu Y; Dopp E; Tuerk J; Bester K
    Water Res; 2012 May; 46(7):2247-56. PubMed ID: 22365369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics and mechanism of photolysis and TiO2 photocatalysis of triclosan.
    Son HS; Ko G; Zoh KD
    J Hazard Mater; 2009 Jul; 166(2-3):954-60. PubMed ID: 19136205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoelectrocatalytic degradation of triclosan on TiO2 nanotube arrays and toxicity change.
    Liu H; Cao X; Liu G; Wang Y; Zhang N; Li T; Tough R
    Chemosphere; 2013 Sep; 93(1):160-5. PubMed ID: 23791346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative transformation of triclosan and chlorophene by manganese oxides.
    Zhang H; Huang CH
    Environ Sci Technol; 2003 Jun; 37(11):2421-30. PubMed ID: 12831027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidation of triclosan by ferrate: reaction kinetics, products identification and toxicity evaluation.
    Yang B; Ying GG; Zhao JL; Zhang LJ; Fang YX; Nghiem LD
    J Hazard Mater; 2011 Feb; 186(1):227-35. PubMed ID: 21093982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of chloroform and chlorinated organics by free-chlorine-mediated oxidation of triclosan.
    Rule KL; Ebbett VR; Vikesland PJ
    Environ Sci Technol; 2005 May; 39(9):3176-85. PubMed ID: 15926568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Triclosan exposure modulates estrogen-dependent responses in the female wistar rat.
    Stoker TE; Gibson EK; Zorrilla LM
    Toxicol Sci; 2010 Sep; 117(1):45-53. PubMed ID: 20562219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of triclosan on hormone secretion and viability of human choriocarcinoma JEG-3 cells.
    Honkisz E; Zieba-Przybylska D; Wojtowicz AK
    Reprod Toxicol; 2012 Nov; 34(3):385-92. PubMed ID: 22677473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Liquid chromatography/time-of-flight mass spectrometric analyses for the elucidation of the photodegradation products of triclosan in wastewater samples.
    Ferrer I; Mezcua M; Gómez MJ; Thurman EM; Agüera A; Hernando MD; Fernández-Alba AR
    Rapid Commun Mass Spectrom; 2004; 18(4):443-50. PubMed ID: 14966851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of triclosan on various aquatic organisms.
    Tatarazako N; Ishibashi H; Teshima K; Kishi K; Arizono K
    Environ Sci; 2004; 11(2):133-40. PubMed ID: 15746894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthetic endocrine disruptors in the environment and water remediation by advanced oxidation processes.
    Gültekin I; Ince NH
    J Environ Manage; 2007 Dec; 85(4):816-32. PubMed ID: 17768001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photocatalytic degradation of resorcinol, an endocrine disrupter, by TiO2 and ZnO suspensions.
    Lam SM; Sin JC; Abdullah AZ; Mohamed AR
    Environ Technol; 2013; 34(9-12):1097-106. PubMed ID: 24191441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aqueous photochemistry of triclosan: formation of 2,4-dichlorophenol, 2,8-dichlorodibenzo-p-dioxin, and oligomerization products.
    Latch DE; Packer JL; Stender BL; VanOverbeke J; Arnold WA; McNeill K
    Environ Toxicol Chem; 2005 Mar; 24(3):517-25. PubMed ID: 15779749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental and theoretical insights into the involvement of radicals in triclosan phototransformation.
    Kliegman S; Eustis SN; Arnold WA; McNeill K
    Environ Sci Technol; 2013 Jul; 47(13):6756-63. PubMed ID: 23282071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.