These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 21442213)

  • 21. Analysis of environmental endocrine disrupting activities using recombinant yeast assay in wastewater treatment plant effluents.
    Li J; Wang Z; Ma M; Peng X
    Bull Environ Contam Toxicol; 2010 May; 84(5):529-35. PubMed ID: 20407748
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Solar photocatalytic degradation of resorcinol a model endocrine disrupter in water using zinc oxide.
    Pardeshi SK; Patil AB
    J Hazard Mater; 2009 Apr; 163(1):403-9. PubMed ID: 18715714
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Application of several advanced oxidation processes for the destruction of terephthalic acid (TPA).
    Thiruvenkatachari R; Kwon TO; Jun JC; Balaji S; Matheswaran M; Moon IS
    J Hazard Mater; 2007 Apr; 142(1-2):308-14. PubMed ID: 17023113
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Degradation of endocrine disrupting bisphenol A by 254 nm irradiation in different water matrices and effect on yeast cells.
    Neamţu M; Frimmel FH
    Water Res; 2006 Dec; 40(20):3745-50. PubMed ID: 17028063
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Monitoring the photochemical degradation of triclosan in wastewater by UV light and sunlight using solid-phase microextraction.
    Sanchez-Prado L; Llompart M; Lores M; García-Jares C; Bayona JM; Cela R
    Chemosphere; 2006 Nov; 65(8):1338-47. PubMed ID: 16735047
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Triclosan susceptibility and co-metabolism--a comparison for three aerobic pollutant-degrading bacteria.
    Kim YM; Murugesan K; Schmidt S; Bokare V; Jeon JR; Kim EJ; Chang YS
    Bioresour Technol; 2011 Feb; 102(3):2206-12. PubMed ID: 21041079
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The bactericidal agent triclosan modulates thyroid hormone-associated gene expression and disrupts postembryonic anuran development.
    Veldhoen N; Skirrow RC; Osachoff H; Wigmore H; Clapson DJ; Gunderson MP; Van Aggelen G; Helbing CC
    Aquat Toxicol; 2006 Dec; 80(3):217-27. PubMed ID: 17011055
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The transformation of triclosan by laccase: Effect of humic acid on the reaction kinetics, products and pathway.
    Dou RN; Wang JH; Chen YC; Hu YY
    Environ Pollut; 2018 Mar; 234():88-95. PubMed ID: 29172042
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impact of subchronic exposure to triclosan and/or fluoride on estrogenic activity in immature female rats: The expression pattern of calbindin-D9k and estrogen receptor α genes.
    Abd-Elhakim YM; Mohammed AT; Ali HA
    J Biochem Mol Toxicol; 2018 Feb; 32(2):. PubMed ID: 29323457
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Germ fighter works as endocrine disrupter.
    Pelley J
    Environ Sci Technol; 2007 Jan; 41(1):12-3. PubMed ID: 17265921
    [No Abstract]   [Full Text] [Related]  

  • 31. Larval exposure to environmentally relevant concentrations of triclosan impairs metamorphosis and reproductive fitness in zebrafish.
    Stenzel A; Wirt H; Patten A; Theodore B; King-Heiden T
    Reprod Toxicol; 2019 Aug; 87():79-86. PubMed ID: 31102721
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Developmental evaluation of a potential non-steroidal estrogen: triclosan.
    Foran CM; Bennett ER; Benson WH
    Mar Environ Res; 2000; 50(1-5):153-6. PubMed ID: 11460682
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dibutyl phthalate contributes to the thyroid receptor antagonistic activity in drinking water processes.
    Li N; Wang D; Zhou Y; Ma M; Li J; Wang Z
    Environ Sci Technol; 2010 Sep; 44(17):6863-8. PubMed ID: 20681736
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolic and immune impairments induced by the endocrine disruptors benzo[a]pyrene and triclosan in Xenopus tropicalis.
    Regnault C; Willison J; Veyrenc S; Airieau A; Méresse P; Fortier M; Fournier M; Brousseau P; Raveton M; Reynaud S
    Chemosphere; 2016 Jul; 155():519-527. PubMed ID: 27153234
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improving the aqueous solubility of triclosan by solubilization, complexation, and in situ salt formation.
    Grove C; Liebenberg W; du Preez JL; Yang W; de Villiers MM
    J Cosmet Sci; 2003; 54(6):537-50. PubMed ID: 14730370
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reproductive endocrine-disrupting effects of triclosan: Population exposure, present evidence and potential mechanisms.
    Wang CF; Tian Y
    Environ Pollut; 2015 Nov; 206():195-201. PubMed ID: 26184583
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Triclosan persistence through wastewater treatment plants and its potential toxic effects on river biofilms.
    Ricart M; Guasch H; Alberch M; Barceló D; Bonnineau C; Geiszinger A; Farré Ml; Ferrer J; Ricciardi F; Romaní AM; Morin S; Proia L; Sala L; Sureda D; Sabater S
    Aquat Toxicol; 2010 Nov; 100(4):346-53. PubMed ID: 20855117
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinetics of triclosan oxidation by aqueous ozone and consequent loss of antibacterial activity: relevance to municipal wastewater ozonation.
    Suarez S; Dodd MC; Omil F; von Gunten U
    Water Res; 2007 Jun; 41(12):2481-90. PubMed ID: 17467034
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hypothesis-driven weight-of-evidence analysis of endocrine disruption potential: a case study with triclosan.
    Mihaich E; Capdevielle M; Urbach-Ross D; Slezak B
    Crit Rev Toxicol; 2017 Apr; 47(4):263-285. PubMed ID: 28128023
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Triclosan: environmental exposure, toxicity and mechanisms of action.
    Dann AB; Hontela A
    J Appl Toxicol; 2011 May; 31(4):285-311. PubMed ID: 21462230
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.