BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 21442889)

  • 1. [Investigation of the anaerobic metabolism of Rhodobacter capsulatus with a flux model].
    Golomysova AN; Ivanov PS
    Biofizika; 2011; 56(1):85-98. PubMed ID: 21442889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptome analysis of Rhodobacter capsulatus grown on different nitrogen sources.
    Erkal NA; Eser MG; Özgür E; Gündüz U; Eroglu I; Yücel M
    Arch Microbiol; 2019 Jul; 201(5):661-671. PubMed ID: 30796473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The highly toxic oxyanion tellurite (TeO (3) (2-) ) enters the phototrophic bacterium Rhodobacter capsulatus via an as yet uncharacterized monocarboxylate transport system.
    Borghese R; Marchetti D; Zannoni D
    Arch Microbiol; 2008 Feb; 189(2):93-100. PubMed ID: 17713758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing photoheterotrophic H2 production by Rhodobacter capsulatus upon interposon mutagenesis in the hupL gene.
    Jahn A; Keuntje B; Dörffler M; Klipp W; Oelze J
    Appl Microbiol Biotechnol; 1994 Jan; 40(5):687-90. PubMed ID: 7765318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactive control of Rhodobacter capsulatus redox-balancing systems during phototrophic metabolism.
    Tichi MA; Tabita FR
    J Bacteriol; 2001 Nov; 183(21):6344-54. PubMed ID: 11591679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aerobic chemolithoautotrophic growth and RubisCO function in Rhodobacter capsulatus and a spontaneous gain of function mutant of Rhodobacter sphaeroides.
    Paoli GC; Tabita FR
    Arch Microbiol; 1998 Jul; 170(1):8-17. PubMed ID: 9639598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photosynthetic electron transport and anaerobic metabolism in purple non-sulfur phototrophic bacteria.
    McEwan AG
    Antonie Van Leeuwenhoek; 1994; 66(1-3):151-64. PubMed ID: 7747929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutagenesis, cloning and complementation analysis of C4-dicarboxylate transport genes from Rhodobacter capsulatus.
    Hamblin MJ; Shaw JG; Curson JP; Kelly DJ
    Mol Microbiol; 1990 Sep; 4(9):1567-74. PubMed ID: 1962840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photomixotrophic growth of Rhodobacter capsulatus SB1003 on ferrous iron.
    Kopf SH; Newman DK
    Geobiology; 2012 May; 10(3):216-22. PubMed ID: 22212713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial photodegradation of aminoarenes. Metabolism of 2-amino-4-nitrophenol by Rhodobacter capsulatus.
    Witte CP; Blasco R; Castillo F
    Appl Biochem Biotechnol; 1998 Mar; 69(3):191-200. PubMed ID: 9584054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Triterpene hydrocarbon production engineered into a metabolically versatile host--Rhodobacter capsulatus.
    Khan NE; Nybo SE; Chappell J; Curtis WR
    Biotechnol Bioeng; 2015 Aug; 112(8):1523-32. PubMed ID: 25728701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maintenance and control of redox poise in Rhodobacter capsulatus strains deficient in the Calvin-Benson-Bassham pathway.
    Tichi MA; Tabita FR
    Arch Microbiol; 2000 Nov; 174(5):322-33. PubMed ID: 11131022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phototrophic Fe(II) oxidation promotes organic carbon acquisition by Rhodobacter capsulatus SB1003.
    Caiazza NC; Lies DP; Newman DK
    Appl Environ Microbiol; 2007 Oct; 73(19):6150-8. PubMed ID: 17693559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen production by hup(-) mutant and wild-type strains of Rhodobacter capsulatus from dark fermentation effluent of sugar beet thick juice in batch and continuous photobioreactors.
    Uyar B; Gürgan M; Özgür E; Gündüz U; Yücel M; Eroglu I
    Bioprocess Biosyst Eng; 2015 Oct; 38(10):1935-42. PubMed ID: 26164274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The assimilatory nitrate reduction system of the phototrophic bacterium Rhodobacter capsulatus E1F1.
    Pino C; Olmo-Mira F; Cabello P; Martínez-Luque M; Castillo F; Roldán MD; Moreno-Vivián C
    Biochem Soc Trans; 2006 Feb; 34(Pt 1):127-9. PubMed ID: 16417500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced photo-fermentative hydrogen production by Rhodobacter capsulatus with pigment content manipulation.
    Ma C; Wang X; Guo L; Wu X; Yang H
    Bioresour Technol; 2012 Aug; 118():490-5. PubMed ID: 22717568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acetate Metabolism in the Purple Non-sulfur Bacterium Rhodobacter capsulatus.
    Petushkova EP; Tsygankov AA
    Biochemistry (Mosc); 2017 May; 82(5):587-605. PubMed ID: 28601069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoproduction of hydrogen by Rhodobacter capsulatus from thermophilic fermentation effluent.
    Uyar B; Schumacher M; Gebicki J; Modigell M
    Bioprocess Biosyst Eng; 2009 Aug; 32(5):603-6. PubMed ID: 19082632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Primary alcohols and di-alcohols as growth substrates for the purple nonsulfur bacterium Rhodobacter capsulatus.
    Pantazopoulous PE; Madigan MT
    Can J Microbiol; 2000 Dec; 46(12):1166-70. PubMed ID: 11142409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term biological hydrogen production by agar immobilized Rhodobacter capsulatus in a sequential batch photobioreactor.
    Elkahlout K; Alipour S; Eroglu I; Gunduz U; Yucel M
    Bioprocess Biosyst Eng; 2017 Apr; 40(4):589-599. PubMed ID: 28000019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.