These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 21443014)

  • 1. [Differential protein analysis on the root response of rice with high phosphorous uptake efficiency to low phosphorous stress].
    Guo YC; Xu HL; Chen FY; Guo SY; Liang YY; Liang KJ; Lin WX
    Ying Yong Sheng Tai Xue Bao; 2010 Dec; 21(12):3231-8. PubMed ID: 21443014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparative proteome approach to decipher the mechanism of rice adaptation to phosphorous deficiency.
    Torabi S; Wissuwa M; Heidari M; Naghavi MR; Gilany K; Hajirezaei MR; Omidi M; Yazdi-Samadi B; Ismail AM; Salekdeh GH
    Proteomics; 2009 Jan; 9(1):159-70. PubMed ID: 19053143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of contrasting rice (Oryza sativa L.) genotypes reveals the Pi-efficient schema for phosphate starvation tolerance.
    Kumar S; Pallavi ; Chugh C; Seem K; Kumar S; Vinod KK; Mohapatra T
    BMC Plant Biol; 2021 Jun; 21(1):282. PubMed ID: 34154533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative proteomic analysis of early salt stress responsive proteins in roots and leaves of rice.
    Liu CW; Chang TS; Hsu YK; Wang AZ; Yen HC; Wu YP; Wang CS; Lai CC
    Proteomics; 2014 Aug; 14(15):1759-75. PubMed ID: 24841874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomic Analysis of Copper-Binding Proteins in Excess Copper-Stressed Roots of Two Rice (Oryza sativa L.) Varieties with Different Cu Tolerances.
    Chen C; Song Y; Zhuang K; Li L; Xia Y; Shen Z
    PLoS One; 2015; 10(4):e0125367. PubMed ID: 25919452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Differential expression of proteins in Oryza sativa leaves in response to cadmium stress].
    Xiao QT; Rong H; Zhou LY; Liu J; Lin WX; Lin RY
    Ying Yong Sheng Tai Xue Bao; 2011 Apr; 22(4):1013-9. PubMed ID: 21774326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative proteome analysis of phosphorus-responsive genotypes reveals the proteins differentially expressed under phosphorous starvation stress in rice.
    Prathap V; Kumar S; Tyagi A
    Int J Biol Macromol; 2023 Apr; 234():123760. PubMed ID: 36812961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomics analysis reveals multiple regulatory mechanisms in response to selenium in rice.
    Wang YD; Wang X; Wong YS
    J Proteomics; 2012 Mar; 75(6):1849-66. PubMed ID: 22236520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomics reveals new salt responsive proteins associated with rice plasma membrane.
    Nohzadeh Malakshah S; Habibi Rezaei M; Heidari M; Salekdeh GH
    Biosci Biotechnol Biochem; 2007 Sep; 71(9):2144-54. PubMed ID: 17827676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative proteome analyses of phosphorus responses in maize (Zea mays L.) roots of wild-type and a low-P-tolerant mutant reveal root characteristics associated with phosphorus efficiency.
    Li K; Xu C; Li Z; Zhang K; Yang A; Zhang J
    Plant J; 2008 Sep; 55(6):927-39. PubMed ID: 18489707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative proteomic study of arsenic-induced differentially expressed proteins in rice roots reveals glutathione plays a central role during As stress.
    Ahsan N; Lee DG; Alam I; Kim PJ; Lee JJ; Ahn YO; Kwak SS; Lee IJ; Bahk JD; Kang KY; Renaut J; Komatsu S; Lee BH
    Proteomics; 2008 Sep; 8(17):3561-76. PubMed ID: 18752204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chilling stress-induced proteomic changes in rice roots.
    Lee DG; Ahsan N; Lee SH; Lee JJ; Bahk JD; Kang KY; Lee BH
    J Plant Physiol; 2009 Jan; 166(1):1-11. PubMed ID: 18433929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Preliminary proteomics analysis of the total proteins of HL Type cytoplasmic male sterility rice anther].
    Wen L; Liu G; Zhang ZJ; Tao J; Wan CX; Zhu YG
    Yi Chuan; 2006 Mar; 28(3):311-6. PubMed ID: 16551598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of elicitor-responsive proteins in rice leaves by a proteomic approach.
    Liao M; Li Y; Wang Z
    Proteomics; 2009 May; 9(10):2809-19. PubMed ID: 19405028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative proteomic study and functional analysis of translationally controlled tumor protein in rice roots under Hg2+ stress.
    Wang F; Shang Y; Yang L; Zhu C
    J Environ Sci (China); 2012; 24(12):2149-58. PubMed ID: 23534212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Root protein profile changes induced by Al exposure in two rice cultivars differing in Al tolerance.
    Wang CY; Shen RF; Wang C; Wang W
    J Proteomics; 2013 Jan; 78():281-93. PubMed ID: 23059537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative proteomics analysis of the root apoplasts of rice seedlings in response to hydrogen peroxide.
    Zhou L; Bokhari SA; Dong CJ; Liu JY
    PLoS One; 2011 Feb; 6(2):e16723. PubMed ID: 21347307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New changes in the plasma-membrane-associated proteome of rice roots under salt stress.
    Cheng Y; Qi Y; Zhu Q; Chen X; Wang N; Zhao X; Chen H; Cui X; Xu L; Zhang W
    Proteomics; 2009 Jun; 9(11):3100-14. PubMed ID: 19526560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomic analyses provide new insights into the responses of Pinus massoniana seedlings to phosphorus deficiency.
    Fan F; Ding G; Wen X
    Proteomics; 2016 Feb; 16(3):504-15. PubMed ID: 26603831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Root proteome of rice studied by iTRAQ provides integrated insight into aluminum stress tolerance mechanisms in plants.
    Wang ZQ; Xu XY; Gong QQ; Xie C; Fan W; Yang JL; Lin QS; Zheng SJ
    J Proteomics; 2014 Feb; 98():189-205. PubMed ID: 24412201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.