BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 21443179)

  • 1. Challenges and advances in validating enzyme design proposals: the case of kemp eliminase catalysis.
    Frushicheva MP; Cao J; Warshel A
    Biochemistry; 2011 May; 50(18):3849-58. PubMed ID: 21443179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring challenges in rational enzyme design by simulating the catalysis in artificial kemp eliminase.
    Frushicheva MP; Cao J; Chu ZT; Warshel A
    Proc Natl Acad Sci U S A; 2010 Sep; 107(39):16869-74. PubMed ID: 20829491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward accurate screening in computer-aided enzyme design.
    Roca M; Vardi-Kilshtain A; Warshel A
    Biochemistry; 2009 Apr; 48(14):3046-56. PubMed ID: 19161327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulating the catalytic effect of a designed mononuclear zinc metalloenzyme that catalyzes the hydrolysis of phosphate triesters.
    Singh MK; Chu ZT; Warshel A
    J Phys Chem B; 2014 Oct; 118(42):12146-52. PubMed ID: 25233046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer aided enzyme design and catalytic concepts.
    Frushicheva MP; Mills MJ; Schopf P; Singh MK; Prasad RB; Warshel A
    Curr Opin Chem Biol; 2014 Aug; 21():56-62. PubMed ID: 24814389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer simulations of enzyme catalysis: methods, progress, and insights.
    Warshel A
    Annu Rev Biophys Biomol Struct; 2003; 32():425-43. PubMed ID: 12574064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Misunderstanding the preorganization concept can lead to confusions about the origin of enzyme catalysis.
    Jindal G; Warshel A
    Proteins; 2017 Dec; 85(12):2157-2161. PubMed ID: 28905418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of the in-silico-designed kemp eliminase KE70 by computational design and directed evolution.
    Khersonsky O; Röthlisberger D; Wollacott AM; Murphy P; Dym O; Albeck S; Kiss G; Houk KN; Baker D; Tawfik DS
    J Mol Biol; 2011 Apr; 407(3):391-412. PubMed ID: 21277311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The empirical valence bond as an effective strategy for computer-aided enzyme design.
    Vardi-Kilshtain A; Roca M; Warshel A
    Biotechnol J; 2009 Apr; 4(4):495-500. PubMed ID: 19229886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The evolution of multiple active site configurations in a designed enzyme.
    Hong NS; Petrović D; Lee R; Gryn'ova G; Purg M; Saunders J; Bauer P; Carr PD; Lin CY; Mabbitt PD; Zhang W; Altamore T; Easton C; Coote ML; Kamerlin SCL; Jackson CJ
    Nat Commun; 2018 Sep; 9(1):3900. PubMed ID: 30254369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of reorganization energy drives evolution of the designed Kemp eliminase KE07.
    Labas A; Szabo E; Mones L; Fuxreiter M
    Biochim Biophys Acta; 2013 May; 1834(5):908-17. PubMed ID: 23380188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How much do enzymes really gain by restraining their reacting fragments?
    Shurki A; Strajbl M; Villà J; Warshel A
    J Am Chem Soc; 2002 Apr; 124(15):4097-107. PubMed ID: 11942849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning the Catalytic Activity of Synthetic Enzyme KE15 with DNA.
    Zheng Y; Vaissier Welborn V
    J Phys Chem B; 2022 May; 126(18):3407-3413. PubMed ID: 35483007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of reorganization energy in rational enzyme design.
    Fuxreiter M; Mones L
    Curr Opin Chem Biol; 2014 Aug; 21():34-41. PubMed ID: 24769299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolutionary optimization of computationally designed enzymes: Kemp eliminases of the KE07 series.
    Khersonsky O; Röthlisberger D; Dym O; Albeck S; Jackson CJ; Baker D; Tawfik DS
    J Mol Biol; 2010 Mar; 396(4):1025-42. PubMed ID: 20036254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ensemble-based enzyme design can recapitulate the effects of laboratory directed evolution in silico.
    Broom A; Rakotoharisoa RV; Thompson MC; Zarifi N; Nguyen E; Mukhametzhanov N; Liu L; Fraser JS; Chica RA
    Nat Commun; 2020 Sep; 11(1):4808. PubMed ID: 32968058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the challenge of exploring the evolutionary trajectory from phosphotriesterase to arylesterase using computer simulations.
    Bora RP; Mills MJ; Frushicheva MP; Warshel A
    J Phys Chem B; 2015 Feb; 119(8):3434-45. PubMed ID: 25620270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid schemes based on quantum mechanics/molecular mechanics simulations goals to success, problems, and perspectives.
    Ferrer S; Ruiz-Pernía J; Martí S; Moliner V; Tuñón I; Bertrán J; Andrés J
    Adv Protein Chem Struct Biol; 2011; 85():81-142. PubMed ID: 21920322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient Base-Catalyzed Kemp Elimination in an Engineered Ancestral Enzyme.
    Gutierrez-Rus LI; Alcalde M; Risso VA; Sanchez-Ruiz JM
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Importance of the Scaffold for de Novo Enzymes: A Case Study with Kemp Eliminase.
    Bhowmick A; Sharma SC; Head-Gordon T
    J Am Chem Soc; 2017 Apr; 139(16):5793-5800. PubMed ID: 28383910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.