BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 21443179)

  • 21. Kemp Eliminase Activity of Ketosteroid Isomerase.
    Lamba V; Sanchez E; Fanning LR; Howe K; Alvarez MA; Herschlag D; Forconi M
    Biochemistry; 2017 Jan; 56(4):582-591. PubMed ID: 28045505
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Engineered enzymes for improved organic synthesis.
    Hult K; Berglund P
    Curr Opin Biotechnol; 2003 Aug; 14(4):395-400. PubMed ID: 12943848
    [TBL] [Abstract][Full Text] [Related]  

  • 23. State-of-the-art protein engineering approaches using biological macromolecules: A review from immobilization to implementation view point.
    Bilal M; Iqbal HMN; Guo S; Hu H; Wang W; Zhang X
    Int J Biol Macromol; 2018 Mar; 108():893-901. PubMed ID: 29102791
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Advances in optimizing enzyme electrostatic preorganization.
    Hennefarth MR; Alexandrova AN
    Curr Opin Struct Biol; 2022 Feb; 72():1-8. PubMed ID: 34280872
    [TBL] [Abstract][Full Text] [Related]  

  • 25. How enzymes work: analysis by modern rate theory and computer simulations.
    Garcia-Viloca M; Gao J; Karplus M; Truhlar DG
    Science; 2004 Jan; 303(5655):186-95. PubMed ID: 14716003
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The catalytic effect of dihydrofolate reductase and its mutants is determined by reorganization energies.
    Liu H; Warshel A
    Biochemistry; 2007 May; 46(20):6011-25. PubMed ID: 17469852
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Iterative approach to computational enzyme design.
    Privett HK; Kiss G; Lee TM; Blomberg R; Chica RA; Thomas LM; Hilvert D; Houk KN; Mayo SL
    Proc Natl Acad Sci U S A; 2012 Mar; 109(10):3790-5. PubMed ID: 22357762
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Using High-Throughput Molecular Dynamics Simulation to Enhance the Computational Design of Kemp Elimination Enzymes.
    Wang P; Zhang J; Zhang S; Lu D; Zhu Y
    J Chem Inf Model; 2023 Feb; 63(4):1323-1337. PubMed ID: 36782360
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A redox-mediated Kemp eliminase.
    Li A; Wang B; Ilie A; Dubey KD; Bange G; Korendovych IV; Shaik S; Reetz MT
    Nat Commun; 2017 Mar; 8():14876. PubMed ID: 28348375
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of catalytic free energies in genetically modified proteins.
    Warshel A; Sussman F; Hwang JK
    J Mol Biol; 1988 May; 201(1):139-59. PubMed ID: 3047396
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of designed and randomly generated catalysts for simple chemical reactions.
    Kipnis Y; Baker D
    Protein Sci; 2012 Sep; 21(9):1388-95. PubMed ID: 22811380
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Minimalist active-site redesign: teaching old enzymes new tricks.
    Toscano MD; Woycechowsky KJ; Hilvert D
    Angew Chem Int Ed Engl; 2007; 46(18):3212-36. PubMed ID: 17450624
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Energy considerations show that low-barrier hydrogen bonds do not offer a catalytic advantage over ordinary hydrogen bonds.
    Warshel A; Papazyan A
    Proc Natl Acad Sci U S A; 1996 Nov; 93(24):13665-70. PubMed ID: 8942991
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Natural Evolution Provides Strong Hints about Laboratory Evolution of Designer Enzymes.
    Xie WJ; Warshel A
    Proc Natl Acad Sci U S A; 2022 Aug; 119(31):e2207904119. PubMed ID: 35901204
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kemp elimination catalysts by computational enzyme design.
    Röthlisberger D; Khersonsky O; Wollacott AM; Jiang L; DeChancie J; Betker J; Gallaher JL; Althoff EA; Zanghellini A; Dym O; Albeck S; Houk KN; Tawfik DS; Baker D
    Nature; 2008 May; 453(7192):190-5. PubMed ID: 18354394
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Engineering the substrate specificity of xylose isomerase.
    Karimäki J; Parkkinen T; Santa H; Pastinen O; Leisola M; Rouvinen J; Turunen O
    Protein Eng Des Sel; 2004 Dec; 17(12):861-9. PubMed ID: 15713782
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of side chain entropy and mutual information for improving the de novo design of Kemp eliminases KE07 and KE70.
    Bhowmick A; Sharma SC; Honma H; Head-Gordon T
    Phys Chem Chem Phys; 2016 Jul; 18(28):19386-96. PubMed ID: 27374812
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computer simulations of the catalytic mechanism of wild-type and mutant β-phosphoglucomutase.
    Barrozo A; Liao Q; Esguerra M; Marloie G; Florián J; Williams NH; Kamerlin SCL
    Org Biomol Chem; 2018 Mar; 16(12):2060-2073. PubMed ID: 29508879
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exploring the Development of Ground-State Destabilization and Transition-State Stabilization in Two Directed Evolution Paths of Kemp Eliminases.
    Jindal G; Ramachandran B; Bora RP; Warshel A
    ACS Catal; 2017 May; 7(5):3301-3305. PubMed ID: 29082065
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Defying the activity-stability trade-off in enzymes: taking advantage of entropy to enhance activity and thermostability.
    Siddiqui KS
    Crit Rev Biotechnol; 2017 May; 37(3):309-322. PubMed ID: 26940154
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.