These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 214434)

  • 81. Functional domains of rhodopsin.
    Litman BJ; Aton B; Hartley JB
    Vision Res; 1982; 22(12):1439-42. PubMed ID: 6305021
    [No Abstract]   [Full Text] [Related]  

  • 82. Isolation of an inhibitory protein for the cyclic guanosine 3','5'-monophosphate phosphodiesterase of bovine rod outer segments.
    Hurley JB; Barry B; Ebrey TG
    Biochim Biophys Acta; 1981 Jul; 675(3-4):359-65. PubMed ID: 6115678
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Isolation of cyclic AMP and cyclic GMP by thin-layer chromatography. Application to assay of adenylate cyclase, guanylate cyclase, and cyclic nucleotide phosphodiesterase.
    Keirns JJ; Wheeler MA; Bitensky MW
    Anal Biochem; 1974 Oct; 61(2):336-48. PubMed ID: 4153618
    [No Abstract]   [Full Text] [Related]  

  • 84. Light scattering methods to monitor interactions between rhodopsin-containing membranes and soluble proteins.
    Heck M; Pulvermüller A; Hofmann KP
    Methods Enzymol; 2000; 315():329-47. PubMed ID: 10736711
    [No Abstract]   [Full Text] [Related]  

  • 85. Coupling of bitter receptor to phosphodiesterase through transducin in taste receptor cells.
    Ruiz-Avila L; McLaughlin SK; Wildman D; McKinnon PJ; Robichon A; Spickofsky N; Margolskee RF
    Nature; 1995 Jul; 376(6535):80-5. PubMed ID: 7596440
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Sub-second turnover of transducin GTPase in bovine rod outer segments. A light scattering study.
    Wagner R; Ryba N; Uhl R
    FEBS Lett; 1988 Jul; 234(1):44-8. PubMed ID: 2839365
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Purification and properties of cyclic CMP phosphodiesterase.
    Helfman DM; Katoh N; Kuo JF
    Adv Cyclic Nucleotide Protein Phosphorylation Res; 1984; 16():403-16. PubMed ID: 6326534
    [No Abstract]   [Full Text] [Related]  

  • 88. Regulation of cyclic nucleotide phosphodiesterase.
    Appleman MM; Terasaki WL
    Adv Cyclic Nucleotide Res; 1975; 5():153-62. PubMed ID: 165663
    [No Abstract]   [Full Text] [Related]  

  • 89. Kinetics of the hydrolysis of 8-bromo-cyclic GMP by the light-activated phosphodiesterase of toad rods.
    Barkdoll AE; Pugh EN; Sitaramayya A
    J Neurochem; 1988 Mar; 50(3):839-46. PubMed ID: 2828548
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Photoreceptor phosphodiesterase: interaction of inhibitory gamma subunit and cyclic GMP with specific binding sites on catalytic subunits.
    Artemyev NO; Arshavsky VY; Cote RH
    Methods; 1998 Jan; 14(1):93-104. PubMed ID: 9500861
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Cyclic nucleotide phosphodiesterase activity in normal mice and mice with retinal degeneration.
    Robb RM
    Invest Ophthalmol Vis Sci; 1979 Oct; 18(10):1097-100. PubMed ID: 225287
    [No Abstract]   [Full Text] [Related]  

  • 92. Activation of phosphodiesterase in frog rod outer segment by an intermediate of rhodopsin photolysis I.
    Fukada Y; Kawamura S; Yoshizawa T; Miki N
    Biochim Biophys Acta; 1981 Jul; 675(2):188-94. PubMed ID: 6268183
    [TBL] [Abstract][Full Text] [Related]  

  • 93. [The effect of cyclic 3',5'-adenosine monophosphoric acid on release of Na and K from the external segments of retinal rods].
    Dumler IL; Etingof RN
    Biokhimiia; 1973; 38(2):408-11. PubMed ID: 4360976
    [No Abstract]   [Full Text] [Related]  

  • 94. On the mechanism of light activation of retinal rod outer segments cyclic GMP phosphodiesterase (light activation-influence of bleached rhodopsin and KF-deinhibition).
    Sitaramayya A; Virmaux N; Mandel P
    Exp Eye Res; 1977 Aug; 25(2):163-9. PubMed ID: 199449
    [No Abstract]   [Full Text] [Related]  

  • 95. [K+-dependent p-nitrophenylphosphatase activity of the outer segments of the retinal rods].
    Sobota A
    Biokhimiia; 1973; 38(5):1047-53. PubMed ID: 4360788
    [No Abstract]   [Full Text] [Related]  

  • 96. Ribonuclease and phosphodiesterase activities in rat hepatocyte plasma membranes.
    Gavard D; Gagnon C; De Lamirande G
    Biochim Biophys Acta; 1974 Dec; 374(2):207-19. PubMed ID: 4373079
    [No Abstract]   [Full Text] [Related]  

  • 97. On the activation of phosphodiesterase by a 26 kDa protein.
    Nikonov SS; Filatov GN; Fesenko EE
    FEBS Lett; 1993 Jan; 316(1):34-6. PubMed ID: 8380775
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Development of an AAV-CRISPR-Cas9-based treatment for dominant cone-rod dystrophy 6.
    Mellen RW; Calabro KR; McCullough KT; Crosson SM; Cova A; Fajardo D; Xu E; Boye SL; Boye SE
    Mol Ther Methods Clin Dev; 2023 Sep; 30():48-64. PubMed ID: 37361352
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Transducin activates cGMP phosphodiesterase by trapping inhibitory γ subunit freed reversibly from the catalytic subunit in solution.
    Asano T; Kawamura S; Tachibanaki S
    Sci Rep; 2019 May; 9(1):7245. PubMed ID: 31076603
    [TBL] [Abstract][Full Text] [Related]  

  • 100. The discovery of the ability of rod photoreceptors to signal single photons.
    Pugh EN
    J Gen Physiol; 2018 Mar; 150(3):383-388. PubMed ID: 29467164
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.