BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

476 related articles for article (PubMed ID: 21443632)

  • 1. A P450-centric view of plant evolution.
    Nelson D; Werck-Reichhart D
    Plant J; 2011 Apr; 66(1):194-211. PubMed ID: 21443632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diversification of P450 genes during land plant evolution.
    Mizutani M; Ohta D
    Annu Rev Plant Biol; 2010; 61():291-315. PubMed ID: 20192745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom.
    Chen F; Tholl D; Bohlmann J; Pichersky E
    Plant J; 2011 Apr; 66(1):212-29. PubMed ID: 21443633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The monosaccharide transporter gene family in Arabidopsis and rice: a history of duplications, adaptive evolution, and functional divergence.
    Johnson DA; Thomas MA
    Mol Biol Evol; 2007 Nov; 24(11):2412-23. PubMed ID: 17827171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular evolution and functional divergence of HAK potassium transporter gene family in rice (Oryza sativa L.).
    Yang Z; Gao Q; Sun C; Li W; Gu S; Xu C
    J Genet Genomics; 2009 Mar; 36(3):161-72. PubMed ID: 19302972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unique genes in plants: specificities and conserved features throughout evolution.
    Armisén D; Lecharny A; Aubourg S
    BMC Evol Biol; 2008 Oct; 8():280. PubMed ID: 18847470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis.
    Guo J; Wu J; Ji Q; Wang C; Luo L; Yuan Y; Wang Y; Wang J
    J Genet Genomics; 2008 Feb; 35(2):105-18. PubMed ID: 18407058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionary and expression study of the aldehyde dehydrogenase (ALDH) gene superfamily in rice (Oryza sativa).
    Gao C; Han B
    Gene; 2009 Feb; 431(1-2):86-94. PubMed ID: 19071198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant cytochrome P450 plasticity and evolution.
    Hansen CC; Nelson DR; Møller BL; Werck-Reichhart D
    Mol Plant; 2021 Aug; 14(8):1244-1265. PubMed ID: 34216829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selection and mutation on microRNA target sequences during rice evolution.
    Guo X; Gui Y; Wang Y; Zhu QH; Helliwell C; Fan L
    BMC Genomics; 2008 Oct; 9():454. PubMed ID: 18831738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A web-based resource for the Arabidopsis P450, cytochromes b5, NADPH-cytochrome P450 reductases, and family 1 glycosyltransferases (http://www.P450.kvl.dk).
    Paquette SM; Jensen K; Bak S
    Phytochemistry; 2009 Dec; 70(17-18):1940-7. PubMed ID: 19818975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of a novel phenolic pathway for pollen development.
    Matsuno M; Compagnon V; Schoch GA; Schmitt M; Debayle D; Bassard JE; Pollet B; Hehn A; Heintz D; Ullmann P; Lapierre C; Bernier F; Ehlting J; Werck-Reichhart D
    Science; 2009 Sep; 325(5948):1688-92. PubMed ID: 19779199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular evolution of the MLO gene family in Oryza sativa and their functional divergence.
    Liu Q; Zhu H
    Gene; 2008 Feb; 409(1-2):1-10. PubMed ID: 18155857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytochrome P450 and the individuality of species.
    Nelson DR
    Arch Biochem Biophys; 1999 Sep; 369(1):1-10. PubMed ID: 10462435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytochrome P450 mono-oxygenases in conifer genomes: discovery of members of the terpenoid oxygenase superfamily in spruce and pine.
    Hamberger B; Bohlmann J
    Biochem Soc Trans; 2006 Dec; 34(Pt 6):1209-14. PubMed ID: 17073787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa).
    Wang D; Pei K; Fu Y; Sun Z; Li S; Liu H; Tang K; Han B; Tao Y
    Gene; 2007 Jun; 394(1-2):13-24. PubMed ID: 17408882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of genomic history to improve phylogeny and understanding of births and deaths in a gene family.
    Sampedro J; Lee Y; Carey RE; dePamphilis C; Cosgrove DJ
    Plant J; 2005 Nov; 44(3):409-19. PubMed ID: 16236151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide analysis, evolutionary expansion, and expression of early auxin-responsive SAUR gene family in rice (Oryza sativa).
    Jain M; Tyagi AK; Khurana JP
    Genomics; 2006 Sep; 88(3):360-71. PubMed ID: 16707243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-level and biochemical diversity of the acyl-activating enzyme superfamily in plants.
    Shockey J; Browse J
    Plant J; 2011 Apr; 66(1):143-60. PubMed ID: 21443629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detecting adaptive evolution and functional divergence in aminocyclopropane-1-carboxylate synthase (ACS) gene family.
    Zhang TC; Qiao Q; Zhong Y
    Comput Biol Chem; 2012 Jun; 38():10-6. PubMed ID: 22543105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.