BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 21443769)

  • 1. Comparative analysis of remotely-sensed data products via ecological niche modeling of avian influenza case occurrences in Middle Eastern poultry.
    Bodbyl-Roels S; Peterson AT; Xiao X
    Int J Health Geogr; 2011 Mar; 10():21. PubMed ID: 21443769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting Avian Influenza Co-Infection with H5N1 and H9N2 in Northern Egypt.
    Young SG; Carrel M; Malanson GP; Ali MA; Kayali G
    Int J Environ Res Public Health; 2016 Sep; 13(9):. PubMed ID: 27608035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Use of Spatial and Spatiotemporal Modeling for Surveillance of H5N1 Highly Pathogenic Avian Influenza in Poultry in the Middle East.
    Alkhamis M; Hijmans RJ; Al-Enezi A; Martínez-López B; Perea AM
    Avian Dis; 2016 May; 60(1 Suppl):146-55. PubMed ID: 27309050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ecology and geography of avian influenza (HPAI H5N1) transmission in the Middle East and northeastern Africa.
    Williams RA; Peterson AT
    Int J Health Geogr; 2009 Jul; 8():47. PubMed ID: 19619336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ecological determinants of highly pathogenic avian influenza (H5N1) outbreaks in Bangladesh.
    Ahmed SS; Ersbøll AK; Biswas PK; Christensen JP; Hannan AS; Toft N
    PLoS One; 2012; 7(3):e33938. PubMed ID: 22470496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global distribution patterns of highly pathogenic H5N1 avian influenza: environmental vs. socioeconomic factors.
    Chen Y; Chen YF
    C R Biol; 2014; 337(7-8):459-65. PubMed ID: 25103831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continent-wide association of H5N1 outbreaks in wild and domestic birds in Europe.
    Williams RA; Xiao XM; Peterson AT
    Geospat Health; 2011 May; 5(2):247-53. PubMed ID: 21590675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Landscape attributes driving avian influenza virus circulation in the Lake Alaotra region of Madagascar.
    Guerrini L; Paul MC; Leger L; Andriamanivo HR; Maminiaina OF; Jourdan M; Molia S; Rakotondravao R; Chevalier V
    Geospat Health; 2014 May; 8(2):445-53. PubMed ID: 24893021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Opportunities for the application of advanced remotely-sensed data in ecological studies of terrestrial animal movement.
    Neumann W; Martinuzzi S; Estes AB; Pidgeon AM; Dettki H; Ericsson G; Radeloff VC
    Mov Ecol; 2015; 3(1):8. PubMed ID: 25941571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing the interface between wild ducks and poultry to evaluate the potential of transmission of avian pathogens.
    Cappelle J; Gaidet N; Iverson SA; Takekawa JY; Newman SH; Fofana B; Gilbert M
    Int J Health Geogr; 2011 Nov; 10():60. PubMed ID: 22085837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A hyper-temporal remote sensing protocol for high-resolution mapping of ecological sites.
    Maynard JJ; Karl JW
    PLoS One; 2017; 12(4):e0175201. PubMed ID: 28414731
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predictable ecology and geography of avian influenza (H5N1) transmission in Nigeria and West Africa.
    Williams RA; Fasina FO; Peterson AT
    Trans R Soc Trop Med Hyg; 2008 May; 102(5):471-9. PubMed ID: 18343470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial Modeling of Wild Bird Risk Factors for Highly Pathogenic A(H5N1) Avian Influenza Virus Transmission.
    Prosser DJ; Hungerford LL; Erwin RM; Ottinger MA; Takekawa JY; Newman SH; Xiao X; Ellis EC
    Avian Dis; 2016 May; 60(1 Suppl):329-36. PubMed ID: 27309075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different environmental drivers of highly pathogenic avian influenza H5N1 outbreaks in poultry and wild birds.
    Si Y; de Boer WF; Gong P
    PLoS One; 2013; 8(1):e53362. PubMed ID: 23308201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling habitat suitability for occurrence of highly pathogenic avian influenza virus H5N1 in domestic poultry in Asia: a spatial multicriteria decision analysis approach.
    Stevens KB; Gilbert M; Pfeiffer DU
    Spat Spatiotemporal Epidemiol; 2013 Mar; 4():1-14. PubMed ID: 23481249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MODISTools - downloading and processing MODIS remotely sensed data in R.
    Tuck SL; Phillips HR; Hintzen RE; Scharlemann JP; Purvis A; Hudson LN
    Ecol Evol; 2014 Dec; 4(24):4658-68. PubMed ID: 25558360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The spread of the H5N1 bird flu epidemic in Asia in 2004.
    Webster RG; Guan Y; Poon L; Krauss S; Webby R; Govorkovai E; Peiris M
    Arch Virol Suppl; 2005; (19):117-29. PubMed ID: 16358424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How's the Flu Getting Through? Landscape genetics suggests both humans and birds spread H5N1 in Egypt.
    Young SG; Carrel M; Kitchen A; Malanson GP; Tamerius J; Ali M; Kayali G
    Infect Genet Evol; 2017 Apr; 49():293-299. PubMed ID: 28179143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly pathogenic avian influenza H5N1, Thailand, 2004.
    Tiensin T; Chaitaweesub P; Songserm T; Chaisingh A; Hoonsuwan W; Buranathai C; Parakamawongsa T; Premashthira S; Amonsin A; Gilbert M; Nielen M; Stegeman A
    Emerg Infect Dis; 2005 Nov; 11(11):1664-72. PubMed ID: 16318716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.