BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

413 related articles for article (PubMed ID: 21443948)

  • 1. Massing in high shear wet granulation can simultaneously improve powder flow and deteriorate powder compaction: a double-edged sword.
    Shi L; Feng Y; Sun CC
    Eur J Pharm Sci; 2011 May; 43(1-2):50-6. PubMed ID: 21443948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of structure and properties of granules containing microcrystalline cellulose and polyvinylpyrrolidone during high-shear wet granulation.
    Osei-Yeboah F; Feng Y; Sun CC
    J Pharm Sci; 2014 Jan; 103(1):207-15. PubMed ID: 24218097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roles of granule size in over-granulation during high shear wet granulation.
    Shi L; Feng Y; Sun CC
    J Pharm Sci; 2010 Aug; 99(8):3322-5. PubMed ID: 20232456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Initial moisture content in raw material can profoundly influence high shear wet granulation process.
    Shi L; Feng Y; Sun CC
    Int J Pharm; 2011 Sep; 416(1):43-8. PubMed ID: 21718767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved tabletability after a polymorphic transition of delta-mannitol during twin screw granulation.
    Vanhoorne V; Bekaert B; Peeters E; De Beer T; Remon JP; Vervaet C
    Int J Pharm; 2016 Jun; 506(1-2):13-24. PubMed ID: 27094358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating scale-up rules of a high-shear wet granulation process.
    Tao J; Pandey P; Bindra DS; Gao JZ; Narang AS
    J Pharm Sci; 2015 Jul; 104(7):2323-33. PubMed ID: 26010137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining experimental design and orthogonal projections to latent structures to study the influence of microcrystalline cellulose properties on roll compaction.
    Dumarey M; Wikström H; Fransson M; Sparén A; Tajarobi P; Josefson M; Trygg J
    Int J Pharm; 2011 Sep; 416(1):110-9. PubMed ID: 21708239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The granule porosity controls the loss of compactibility for both dry- and wet-processed cellulose granules but at different rate.
    Nordström J; Alderborn G
    J Pharm Sci; 2015 Jun; 104(6):2029-2039. PubMed ID: 25872760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the origins of content non-uniformity in high-shear wet granulation.
    Oka S; Smrčka D; Kataria A; Emady H; Muzzio F; Štěpánek F; Ramachandran R
    Int J Pharm; 2017 Aug; 528(1-2):578-585. PubMed ID: 28627457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic basis for the effects of process parameters on quality attributes in high shear wet granulation.
    Badawy SI; Narang AS; LaMarche K; Subramanian G; Varia SA
    Int J Pharm; 2012 Dec; 439(1-2):324-33. PubMed ID: 22981985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insensitivity of compaction properties of brittle granules to size enlargement by roller compaction.
    Wu SJ; Sun C
    J Pharm Sci; 2007 May; 96(5):1445-50. PubMed ID: 17455348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time assessment of granule densification in high shear wet granulation and application to scale-up of a placebo and a brivanib alaninate formulation.
    Narang AS; Sheverev VA; Stepaniuk V; Badawy S; Stevens T; Macias K; Wolf A; Pandey P; Bindra D; Varia S
    J Pharm Sci; 2015 Mar; 104(3):1019-34. PubMed ID: 25470221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of Different Dry and Wet Granulation Techniques on Granule and Tablet Properties: A Comparative Study.
    Arndt OR; Baggio R; Adam AK; Harting J; Franceschinis E; Kleinebudde P
    J Pharm Sci; 2018 Dec; 107(12):3143-3152. PubMed ID: 30244008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roll compaction/dry granulation: effect of raw material particle size on granule and tablet properties.
    Herting MG; Kleinebudde P
    Int J Pharm; 2007 Jun; 338(1-2):110-8. PubMed ID: 17324537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Critical evaluation of root causes of the reduced compactability after roll compaction/dry granulation.
    Mosig J; Kleinebudde P
    J Pharm Sci; 2015 Mar; 104(3):1108-18. PubMed ID: 25558976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A combined experimental and modeling approach to study the effects of high-shear wet granulation process parameters on granule characteristics.
    Pandey P; Tao J; Chaudhury A; Ramachandran R; Gao JZ; Bindra DS
    Pharm Dev Technol; 2013 Feb; 18(1):210-24. PubMed ID: 22780851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A formulation strategy for solving the overgranulation problem in high shear wet granulation.
    Osei-Yeboah F; Zhang M; Feng Y; Sun CC
    J Pharm Sci; 2014 Aug; 103(8):2434-40. PubMed ID: 24985120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative study of roll compaction of free-flowing and cohesive pharmaceutical powders.
    Yu S; Gururajan B; Reynolds G; Roberts R; Adams MJ; Wu CY
    Int J Pharm; 2012 May; 428(1-2):39-47. PubMed ID: 22402475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative study of the influence of alpha-lactose monohydrate particle morphology on granule and tablet properties after roll compaction/dry granulation.
    Grote S; Kleinebudde P
    Pharm Dev Technol; 2019 Mar; 24(3):314-322. PubMed ID: 29757067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of the variation in the ambient moisture on the compaction behavior of powder undergoing roller-compaction and on the characteristics of tablets produced from the post-milled granules.
    Gupta A; Peck GE; Miller RW; Morris KR
    J Pharm Sci; 2005 Oct; 94(10):2314-26. PubMed ID: 16136545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.