These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 21444670)

  • 1. Role for stromal heterogeneity in prostate tumorigenesis.
    Kiskowski MA; Jackson RS; Banerjee J; Li X; Kang M; Iturregui JM; Franco OE; Hayward SW; Bhowmick NA
    Cancer Res; 2011 May; 71(10):3459-70. PubMed ID: 21444670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-talk between paracrine-acting cytokine and chemokine pathways promotes malignancy in benign human prostatic epithelium.
    Ao M; Franco OE; Park D; Raman D; Williams K; Hayward SW
    Cancer Res; 2007 May; 67(9):4244-53. PubMed ID: 17483336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prostate tumor progression is mediated by a paracrine TGF-beta/Wnt3a signaling axis.
    Li X; Placencio V; Iturregui JM; Uwamariya C; Sharif-Afshar AR; Koyama T; Hayward SW; Bhowmick NA
    Oncogene; 2008 Nov; 27(56):7118-30. PubMed ID: 18724388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altered TGF-β signaling in a subpopulation of human stromal cells promotes prostatic carcinogenesis.
    Franco OE; Jiang M; Strand DW; Peacock J; Fernandez S; Jackson RS; Revelo MP; Bhowmick NA; Hayward SW
    Cancer Res; 2011 Feb; 71(4):1272-81. PubMed ID: 21303979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stromal transforming growth factor-beta signaling mediates prostatic response to androgen ablation by paracrine Wnt activity.
    Placencio VR; Sharif-Afshar AR; Li X; Huang H; Uwamariya C; Neilson EG; Shen MM; Matusik RJ; Hayward SW; Bhowmick NA
    Cancer Res; 2008 Jun; 68(12):4709-18. PubMed ID: 18559517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lack of transforming growth factor-β signaling promotes collective cancer cell invasion through tumor-stromal crosstalk.
    Matise LA; Palmer TD; Ashby WJ; Nashabi A; Chytil A; Aakre M; Pickup MW; Gorska AE; Zijlstra A; Moses HL
    Breast Cancer Res; 2012 Jul; 14(4):R98. PubMed ID: 22748014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loss of TGF-β responsiveness in prostate stromal cells alters chemokine levels and facilitates the development of mixed osteoblastic/osteolytic bone lesions.
    Li X; Sterling JA; Fan KH; Vessella RL; Shyr Y; Hayward SW; Matrisian LM; Bhowmick NA
    Mol Cancer Res; 2012 Apr; 10(4):494-503. PubMed ID: 22290877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic reprogramming of cancer-associated fibroblasts by TGF-β drives tumor growth: connecting TGF-β signaling with "Warburg-like" cancer metabolism and L-lactate production.
    Guido C; Whitaker-Menezes D; Capparelli C; Balliet R; Lin Z; Pestell RG; Howell A; Aquila S; Andò S; Martinez-Outschoorn U; Sotgia F; Lisanti MP
    Cell Cycle; 2012 Aug; 11(16):3019-35. PubMed ID: 22874531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel bone morphogenetic protein signaling in heterotypic cell interactions in prostate cancer.
    Yang S; Pham LK; Liao CP; Frenkel B; Reddi AH; Roy-Burman P
    Cancer Res; 2008 Jan; 68(1):198-205. PubMed ID: 18172312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transforming growth factor beta 1 and its receptor types I and II. Comparison in human normal prostate, benign prostatic hyperplasia, and prostatic carcinoma.
    Royuela M; De Miguel MP; Bethencourt FR; Sanchez-Chapado M; Fraile B; Paniagua R
    Growth Factors; 1998; 16(2):101-10. PubMed ID: 9932228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CD26 expression is attenuated by TGF-β and SDF-1 autocrine signaling on stromal myofibroblasts in human breast cancers.
    Mezawa Y; Daigo Y; Takano A; Miyagi Y; Yokose T; Yamashita T; Morimoto C; Hino O; Orimo A
    Cancer Med; 2019 Jul; 8(8):3936-3948. PubMed ID: 31140748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fibroblast growth factor-2 mediates transforming growth factor-beta action in prostate cancer reactive stroma.
    Yang F; Strand DW; Rowley DR
    Oncogene; 2008 Jan; 27(4):450-9. PubMed ID: 17637743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transforming growth factor-beta signaling in prostate stromal cells supports prostate carcinoma growth by up-regulating stromal genes related to tissue remodeling.
    Verona EV; Elkahloun AG; Yang J; Bandyopadhyay A; Yeh IT; Sun LZ
    Cancer Res; 2007 Jun; 67(12):5737-46. PubMed ID: 17575140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autocrine TGF-beta and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts.
    Kojima Y; Acar A; Eaton EN; Mellody KT; Scheel C; Ben-Porath I; Onder TT; Wang ZC; Richardson AL; Weinberg RA; Orimo A
    Proc Natl Acad Sci U S A; 2010 Nov; 107(46):20009-14. PubMed ID: 21041659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FGFR1-WNT-TGF-β signaling in prostate cancer mouse models recapitulates human reactive stroma.
    Carstens JL; Shahi P; Van Tsang S; Smith B; Creighton CJ; Zhang Y; Seamans A; Seethammagari M; Vedula I; Levitt JM; Ittmann MM; Rowley DR; Spencer DM
    Cancer Res; 2014 Jan; 74(2):609-20. PubMed ID: 24305876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stromal epigenetic dysregulation is sufficient to initiate mouse prostate cancer via paracrine Wnt signaling.
    Zong Y; Huang J; Sankarasharma D; Morikawa T; Fukayama M; Epstein JI; Chada KK; Witte ON
    Proc Natl Acad Sci U S A; 2012 Dec; 109(50):E3395-404. PubMed ID: 23184966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prostaglandin E2 induces stromal cell-derived factor-1 expression in prostate stromal cells by activating protein kinase A and transcription factor Sp1.
    Peng Y; Shi J; Du X; Wang L; Klocker H; Mo L; Mo Z; Zhang J
    Int J Biochem Cell Biol; 2013 Mar; 45(3):521-30. PubMed ID: 23246486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transforming growth factor-beta in benign and malignant prostate.
    Lee C; Sintich SM; Mathews EP; Shah AH; Kundu SD; Perry KT; Cho JS; Ilio KY; Cronauer MV; Janulis L; Sensibar JA
    Prostate; 1999 Jun; 39(4):285-90. PubMed ID: 10344218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A cross-talk between stromal cell-derived factor-1 and transforming growth factor-beta controls the quiescence/cycling switch of CD34(+) progenitors through FoxO3 and mammalian target of rapamycin.
    Chabanon A; Desterke C; Rodenburger E; Clay D; Guerton B; Boutin L; Bennaceur-Griscelli A; Pierre-Louis O; Uzan G; Abecassis L; Bourgeade MF; Lataillade JJ; Le Bousse-Kerdilès MC
    Stem Cells; 2008 Dec; 26(12):3150-61. PubMed ID: 18757300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of SFRP1 as a candidate mediator of stromal-to-epithelial signaling in prostate cancer.
    Joesting MS; Perrin S; Elenbaas B; Fawell SE; Rubin JS; Franco OE; Hayward SW; Cunha GR; Marker PC
    Cancer Res; 2005 Nov; 65(22):10423-30. PubMed ID: 16288033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.