These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 21444962)

  • 1. Aligned, isotropic and patterned carbon nanotube substrates that control the growth and alignment of Chinese hamster ovary cells.
    Abdullah CA; Asanithi P; Brunner EW; Jurewicz I; Bo C; Azad CL; Ovalle-Robles R; Fang S; Lima MD; Lepro X; Collins S; Baughman RH; Sear RP; Dalton AB
    Nanotechnology; 2011 May; 22(20):205102. PubMed ID: 21444962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of highly dense aligned ribbons and transparent films of single-walled carbon nanotubes directly from carpets.
    Pint CL; Xu YQ; Pasquali M; Hauge RH
    ACS Nano; 2008 Sep; 2(9):1871-8. PubMed ID: 19206427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors.
    Kocabas C; Hur SH; Gaur A; Meitl MA; Shim M; Rogers JA
    Small; 2005 Nov; 1(11):1110-6. PubMed ID: 17193404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Passivation oxide controlled selective carbon nanotube growth on metal substrates.
    Bult JB; Sawyer WG; Ajayan PM; Schadler LS
    Nanotechnology; 2009 Feb; 20(8):085302. PubMed ID: 19417446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-yield growth of vertically aligned carbon nanotubes on a continuously moving substrate.
    Guzmán de Villoria R; Figueredo SL; Hart AJ; Steiner SA; Slocum AH; Wardle BL
    Nanotechnology; 2009 Oct; 20(40):405611. PubMed ID: 19752503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alignment of muscle precursor cells on the vertical edges of thick carbon nanotube films.
    Holt I; Gestmann I; Wright AC
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4274-9. PubMed ID: 23910343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alignment dynamics of single-walled carbon nanotubes in pulsed ultrahigh magnetic fields.
    Shaver J; Parra-Vasquez AN; Hansel S; Portugall O; Mielke CH; von Ortenberg M; Hauge RH; Pasquali M; Kono J
    ACS Nano; 2009 Jan; 3(1):131-8. PubMed ID: 19206259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-resolution micropatterned Teflon AF substrates for biocompatible nanofluidic devices.
    Czolkos I; Hakonen B; Orwar O; Jesorka A
    Langmuir; 2012 Feb; 28(6):3200-5. PubMed ID: 22204476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth of horizontally aligned single-walled carbon nanotubes on anisotropically etched silicon substrate.
    Orofeo CM; Ago H; Ikuta T; Takahasi K; Tsuji M
    Nanoscale; 2010 Sep; 2(9):1708-14. PubMed ID: 20820701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proliferation of aligned mammalian cells on laser-nanostructured polystyrene.
    Rebollar E; Frischauf I; Olbrich M; Peterbauer T; Hering S; Preiner J; Hinterdorfer P; Romanin C; Heitz J
    Biomaterials; 2008 Apr; 29(12):1796-806. PubMed ID: 18237776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct growth of aligned carbon nanotubes on bulk metals.
    Talapatra S; Kar S; Pal SK; Vajtai R; Ci L; Victor P; Shaijumon MM; Kaur S; Nalamasu O; Ajayan PM
    Nat Nanotechnol; 2006 Nov; 1(2):112-6. PubMed ID: 18654161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymer cell culture substrates with micropatterned carbon nanotubes.
    Eliason MT; Sunden EO; Cannon AH; Graham S; García AJ; King WP
    J Biomed Mater Res A; 2008 Sep; 86(4):996-1001. PubMed ID: 18067160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon nanotube graphoepitaxy: highly oriented growth by faceted nanosteps.
    Ismach A; Kantorovich D; Joselevich E
    J Am Chem Soc; 2005 Aug; 127(33):11554-5. PubMed ID: 16104703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macrophage receptor with collagenous structure (MARCO) is a dynamic adhesive molecule that enhances uptake of carbon nanotubes by CHO-K1 cells.
    Hirano S; Fujitani Y; Furuyama A; Kanno S
    Toxicol Appl Pharmacol; 2012 Feb; 259(1):96-103. PubMed ID: 22209804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA-templated nanotube localization.
    Xin H; Woolley AT
    J Am Chem Soc; 2003 Jul; 125(29):8710-1. PubMed ID: 12862450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct attachment of well-aligned single-walled carbon nanotube architectures to silicon (100) surfaces: a simple approach for device assembly.
    Yu J; Shapter JG; Quinton JS; Johnston MR; Beattie DA
    Phys Chem Chem Phys; 2007 Jan; 9(4):510-20. PubMed ID: 17216067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Applications of carbon nanotubes in neurobiology.
    Malarkey EB; Parpura V
    Neurodegener Dis; 2007; 4(4):292-9. PubMed ID: 17627132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using single-walled carbon nanotubes nonwoven films as scaffolds to enhance long-term cell proliferation in vitro.
    Meng J; Song L; Meng J; Kong H; Zhu G; Wang C; Xu L; Xie S; Xu H
    J Biomed Mater Res A; 2006 Nov; 79(2):298-306. PubMed ID: 16817220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-aligned nanogaps on multilayer electrodes for fluidic and magnetic assembly of carbon nanotubes.
    Shim JS; Yun YH; Cho W; Shanov V; Schulz MJ; Ahn CH
    Langmuir; 2010 Jul; 26(14):11642-7. PubMed ID: 20553000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chapter 6 - Carbon nanotubes as substrates/scaffolds for neural cell growth.
    Lee W; Parpura V
    Prog Brain Res; 2009; 180():110-25. PubMed ID: 20302831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.