These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 21444980)
1. The growth of freestanding single carbon nanotube arrays. Kim DH; Cho DS; Jang HS; Kim CD; Lee HR Nanotechnology; 2003 Dec; 14(12):1269-71. PubMed ID: 21444980 [TBL] [Abstract][Full Text] [Related]
2. Photolithographic fabrication of gated self-aligned parallel electron beam emitters with a single-stranded carbon nanotube. Ho J; Ono T; Tsai CH; Esashi M Nanotechnology; 2008 Sep; 19(36):365601. PubMed ID: 21828872 [TBL] [Abstract][Full Text] [Related]
3. Pretreatment control of carbon nanotube array growth for gas separation: alignment and growth studied using microscopy and small-angle X-ray scattering. Yang X; Yuan L; Peterson VK; Minett AI; Zhao M; Kirby N; Mudie S; Harris AT ACS Appl Mater Interfaces; 2013 Apr; 5(8):3063-70. PubMed ID: 23517303 [TBL] [Abstract][Full Text] [Related]
4. Flexible high-conductivity carbon-nanotube interconnects made by rolling and printing. Tawfick S; O'Brien K; Hart AJ Small; 2009 Nov; 5(21):2467-73. PubMed ID: 19685444 [TBL] [Abstract][Full Text] [Related]
5. Direct growth of aligned carbon nanotubes on bulk metals. Talapatra S; Kar S; Pal SK; Vajtai R; Ci L; Victor P; Shaijumon MM; Kaur S; Nalamasu O; Ajayan PM Nat Nanotechnol; 2006 Nov; 1(2):112-6. PubMed ID: 18654161 [TBL] [Abstract][Full Text] [Related]
6. The evolution of carbon nanotubes during their growth by plasma enhanced chemical vapor deposition. Wang H; Ren ZF Nanotechnology; 2011 Oct; 22(40):405601. PubMed ID: 21911923 [TBL] [Abstract][Full Text] [Related]
7. The fabrication of carbon-nanotube-coated electrodes and a field-emission-based luminescent device. Agarwal S; Yamini Sarada B; Kar KK Nanotechnology; 2010 Feb; 21(6):065601. PubMed ID: 20057034 [TBL] [Abstract][Full Text] [Related]
8. Tailoring the morphology of carbon nanotube arrays: from spinnable forests to undulating foams. Zhang Y; Zou G; Doorn SK; Htoon H; Stan L; Hawley ME; Sheehan CJ; Zhu Y; Jia Q ACS Nano; 2009 Aug; 3(8):2157-62. PubMed ID: 19640000 [TBL] [Abstract][Full Text] [Related]
9. A novel field emission microscopy method to study field emission characteristics of freestanding carbon nanotube arrays. Li Y; Sun Y; Jaffray DA; Yeow JT Nanotechnology; 2017 Apr; 28(15):155704. PubMed ID: 28211793 [TBL] [Abstract][Full Text] [Related]
10. Facile preparation of free-standing carbon nanotube arrays produced using two-step floating-ferrocene chemical vapor deposition. Yang X; Yuan L; Peterson VK; Minett AI; Yin Y; Harris AT ACS Appl Mater Interfaces; 2012 Mar; 4(3):1417-22. PubMed ID: 22311688 [TBL] [Abstract][Full Text] [Related]
11. A two-step shearing strategy to disperse long carbon nanotubes from vertically aligned multiwalled carbon nanotube arrays for transparent conductive films. Xu GH; Zhang Q; Huang JQ; Zhao MQ; Zhou WP; Wei F Langmuir; 2010 Feb; 26(4):2798-804. PubMed ID: 19817403 [TBL] [Abstract][Full Text] [Related]
12. Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications. Penza M; Rossi R; Alvisi M; Serra E Nanotechnology; 2010 Mar; 21(10):105501. PubMed ID: 20154374 [TBL] [Abstract][Full Text] [Related]
13. A self-assembled synthesis of carbon nanotubes for interconnects. Chen Z; Cao G; Lin Z; Koehler I; Bachmann PK Nanotechnology; 2006 Feb; 17(4):1062-6. PubMed ID: 21727382 [TBL] [Abstract][Full Text] [Related]
14. Variable electron beam diameter achieved by a titanium oxide/carbon nanotube hetero-structure suitable for nanolithography. Abdi Y; Barati F Nanotechnology; 2013 Feb; 24(5):055303. PubMed ID: 23306765 [TBL] [Abstract][Full Text] [Related]
15. Visible diffraction from quasi-crystalline arrays of carbon nanotubes. Butler TP; Butt H; Wilkinson TD; Amaratunga GA Nanoscale; 2015 Aug; 7(32):13452-7. PubMed ID: 26109267 [TBL] [Abstract][Full Text] [Related]
16. Drying induced upright sliding and reorganization of carbon nanotube arrays. Li Q; Depaula R; Zhang X; Zheng L; Arendt PN; Mueller FM; Zhu YT; Tu Y Nanotechnology; 2006 Sep; 17(18):4533-6. PubMed ID: 21727573 [TBL] [Abstract][Full Text] [Related]
17. Synthesis of carbon nanotubes on diamond-like carbon by the hot filament plasma-enhanced chemical vapor deposition method. Choi EC; Park YS; Hong B Micron; 2009; 40(5-6):612-6. PubMed ID: 19318258 [TBL] [Abstract][Full Text] [Related]
18. TEM investigation on the growth mechanism of carbon nanotubes synthesized by hot-filament chemical vapor deposition. Chen X; Wang R; Xu J; Yu D Micron; 2004; 35(6):455-60. PubMed ID: 15120130 [TBL] [Abstract][Full Text] [Related]
19. Orthogonal orientation control of carbon nanotube growth. Zhou W; Ding L; Yang S; Liu J J Am Chem Soc; 2010 Jan; 132(1):336-41. PubMed ID: 20000705 [TBL] [Abstract][Full Text] [Related]
20. Insights in the plasma-assisted growth of carbon nanotubes through atomic scale simulations: effect of electric field. Neyts EC; van Duin AC; Bogaerts A J Am Chem Soc; 2012 Jan; 134(2):1256-60. PubMed ID: 22126536 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]