These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 21445138)

  • 1. Fluorophore-doped xerogel antiresonant reflecting optical waveguides.
    Llobera A; Cadarso VJ; Carregal-Romero E; Brugger J; Domínguez C; Fernández-Sánchez C
    Opt Express; 2011 Mar; 19(6):5026-39. PubMed ID: 21445138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-step patterning of hybrid xerogel materials for the fabrication of disposable solid-state light emitters.
    Carregal-Romero E; Llobera A; Cadarso VJ; Darder M; Aranda P; Domínguez C; Ruiz-Hitzky E; Fernández-Sanchez C
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):5029-37. PubMed ID: 22950757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated wavelength-selective optical waveguides for microfluidic-based laser-induced fluorescence detection.
    Bliss CL; McMullin JN; Backhouse CJ
    Lab Chip; 2008 Jan; 8(1):143-51. PubMed ID: 18094772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Propagation losses in undoped and n-doped polycrystalline silicon wire waveguides.
    Zhu S; Fang Q; Yu MB; Lo GQ; Kwong DL
    Opt Express; 2009 Nov; 17(23):20891-9. PubMed ID: 19997326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and integration of xerogel polymeric absorbance micro-filters into lab-on-chip systems.
    Carregal-Romero E; Fernández-Sánchez C; Eguizabal A; Demming S; Büttgenbach S; Llobera A
    Opt Express; 2012 Oct; 20(21):23700-19. PubMed ID: 23188336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GI-core polymer parallel optical waveguide with high-loss, carbon-black-doped cladding for extra low inter-channel crosstalk.
    Uno H; Ishigure T
    Opt Express; 2011 May; 19(11):10931-9. PubMed ID: 21643353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Er-doped light emitting slot waveguides monolithically integrated in a silicon photonic chip.
    Ramírez JM; Ferrarese Lupi F; Berencén Y; Anopchenko A; Colonna JP; Jambois O; Fedeli JM; Pavesi L; Prtljaga N; Rivallin P; Tengattini A; Navarro-Urrios D; Garrido B
    Nanotechnology; 2013 Mar; 24(11):115202. PubMed ID: 23449309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silicon antiresonant reflecting optical waveguides.
    Soref RA; Ritter KJ
    Opt Lett; 1990 Jul; 15(14):792-4. PubMed ID: 19768080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pure-silica optical waveguides, fiber couplers, and high-aspect ratio submicrometer channels for electrokinetic separation devices.
    Mogensen KB; Eriksson F; Gustafsson O; Nikolajsen RP; Kutter JP
    Electrophoresis; 2004 Nov; 25(21-22):3788-95. PubMed ID: 15565688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loss engineered slow light waveguides.
    O'Faolain L; Schulz SA; Beggs DM; White TP; Spasenović M; Kuipers L; Morichetti F; Melloni A; Mazoyer S; Hugonin JP; Lalanne P; Krauss TF
    Opt Express; 2010 Dec; 18(26):27627-38. PubMed ID: 21197037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Full-field photonic biosensors based on tunable bio-doped sol-gel glasses.
    Llobera A; Cadarso VJ; Darder M; Domínguez C; Fernández-Sánchez C
    Lab Chip; 2008 Jul; 8(7):1185-90. PubMed ID: 18584096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Junction-type photonic crystal waveguides for notch- and pass-band filtering.
    Shahid N; Amin M; Naureen S; Swillo M; Anand S
    Opt Express; 2011 Oct; 19(21):21074-80. PubMed ID: 21997115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultralow-loss polycrystalline silicon waveguides and high uniformity 1x12 MMI fanout for 3D photonic integration.
    Kwong D; Covey J; Hosseini A; Zhang Y; Xu X; Chen RT
    Opt Express; 2012 Sep; 20(19):21722-8. PubMed ID: 23037291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual-core optofluidic chip for independent particle detection and tunable spectral filtering.
    Ozcelik D; Phillips BS; Parks JW; Measor P; Gulbransen D; Hawkins AR; Schmidt H
    Lab Chip; 2012 Oct; 12(19):3728-33. PubMed ID: 22864667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-loss amorphous silicon wire waveguide for integrated photonics: effect of fabrication process and the thermal stability.
    Zhu S; Lo GQ; Kwong DL
    Opt Express; 2010 Nov; 18(24):25283-91. PubMed ID: 21164876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Broadband all-optical modulation in hydrogenated-amorphous silicon waveguides.
    Narayanan K; Elshaari AW; Preble SF
    Opt Express; 2010 May; 18(10):9809-14. PubMed ID: 20588830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silicon-on-sapphire integrated waveguides for the mid-infrared.
    Baehr-Jones T; Spott A; Ilic R; Spott A; Penkov B; Asher W; Hochberg M
    Opt Express; 2010 Jun; 18(12):12127-35. PubMed ID: 20588335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An all-silicon Raman laser.
    Rong H; Liu A; Jones R; Cohen O; Hak D; Nicolaescu R; Fang A; Paniccia M
    Nature; 2005 Jan; 433(7023):292-4. PubMed ID: 15635371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymer waveguide backplanes for optical sensor interfaces in microfluidics.
    Lee KS; Lee HL; Ram RJ
    Lab Chip; 2007 Nov; 7(11):1539-45. PubMed ID: 17960283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wavelength-selective filter based on a hollow optical waveguide.
    Chiu HK; Chang CH; Hou CH; Chen CC; Lee CC
    Appl Opt; 2011 Jan; 50(2):227-30. PubMed ID: 21221149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.