These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 21445165)

  • 1. Tunable bandwidth of band-stop filter by metamaterial cell coupling in optical frequency.
    Li X; Yang L; Hu C; Luo X; Hong M
    Opt Express; 2011 Mar; 19(6):5283-9. PubMed ID: 21445165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid metamaterial design and fabrication for terahertz resonance response enhancement.
    Lim CS; Hong MH; Chen ZC; Han NR; Luk'yanchuk B; Chong TC
    Opt Express; 2010 Jun; 18(12):12421-9. PubMed ID: 20588369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency.
    Wang J; Fan C; Ding P; He J; Cheng Y; Hu W; Cai G; Liang E; Xue Q
    Opt Express; 2012 Jul; 20(14):14871-8. PubMed ID: 22772182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and Characterization of Wideband Terahertz Metamaterial Stop-Band Filter.
    Li H; Wang J; Wang X; Feng Y; Sun Z
    Micromachines (Basel); 2022 Jun; 13(7):. PubMed ID: 35888853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable metamaterial filter for optical communication in the terahertz frequency range.
    Yang W; Lin YS
    Opt Express; 2020 Jun; 28(12):17620-17629. PubMed ID: 32679967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates.
    Han NR; Chen ZC; Lim CS; Ng B; Hong MH
    Opt Express; 2011 Apr; 19(8):6990-8. PubMed ID: 21503013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-band slow light metamaterial.
    Zhu L; Meng FY; Fu JH; Wu Q; Hua J
    Opt Express; 2012 Feb; 20(4):4494-502. PubMed ID: 22418208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Broadband plasmon-induced transparency in terahertz metamaterials via constructive interference of electric and magnetic couplings.
    Wan M; Song Y; Zhang L; Zhou F
    Opt Express; 2015 Oct; 23(21):27361-8. PubMed ID: 26480398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable Band-Stop Filters for Graphene Plasmons Based on Periodically Modulated Graphene.
    Shi B; Cai W; Zhang X; Xiang Y; Zhan Y; Geng J; Ren M; Xu J
    Sci Rep; 2016 May; 6():26796. PubMed ID: 27228949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GaN-based metamaterial terahertz bandpass filter design: tunability and ultra-broad passband attainment.
    Khodaee M; Banakermani M; Baghban H
    Appl Opt; 2015 Oct; 54(29):8617-24. PubMed ID: 26479795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Broadband metamaterial absorber based on coupling resistive frequency selective surface.
    Sun L; Cheng H; Zhou Y; Wang J
    Opt Express; 2012 Feb; 20(4):4675-80. PubMed ID: 22418224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Spoof Surface Plasmon Polaritons (SSPPs) Based Dual-Band-Rejection Filter with Wide Rejection Bandwidth.
    Farokhipour E; Mehrabi M; Komjani N; Ding C
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33352711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Terahertz notch and low-pass filters based on band gaps properties by using metal slits in tapered parallel-plate waveguides.
    Lee ES; Lee SG; Kee CS; Jeon TI
    Opt Express; 2011 Aug; 19(16):14852-9. PubMed ID: 21934846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Negative-index metamaterial at visible frequencies based on high order plasmon resonance.
    Cong J; Yun B; Cui Y
    Appl Opt; 2012 May; 51(13):2469-76. PubMed ID: 22614428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bandwidth Tunable Optical Bandpass Filter Based on Parity-Time Symmetry.
    Zhang B; Chen N; Lu X; Hu Y; Yang Z; Zhang X; Xu J
    Micromachines (Basel); 2022 Jan; 13(1):. PubMed ID: 35056254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A tunable multi-band metamaterial design using micro-split SRR structures.
    Ekmekci E; Topalli K; Akin T; Turhan-Sayan G
    Opt Express; 2009 Aug; 17(18):16046-58. PubMed ID: 19724605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable band-pass plasmonic waveguide filters with nanodisk resonators.
    Lu H; Liu X; Mao D; Wang L; Gong Y
    Opt Express; 2010 Aug; 18(17):17922-7. PubMed ID: 20721178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexible and Polarization Independent Miniaturized Double-Band/Broadband Tunable Metamaterial Terahertz Filter.
    Esakkimuthu M; Jothinayagam I; Arumugam K; Pravin SC; Jewariya M
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [A Double Split Ring Terahertz Filter on Ploymide Substrate].
    He J; Zhang TJ; Xiong W; Zhang B; He T; Shen JL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Nov; 35(11):3050-3. PubMed ID: 26978906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.