These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 21445213)

  • 1. Characterization of antireflection moth-eye film on crystalline silicon photovoltaic module.
    Yamada N; Ijiro T; Okamoto E; Hayashi K; Masuda H
    Opt Express; 2011 Mar; 19 Suppl 2():A118-25. PubMed ID: 21445213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multifunctional microstructured polymer films for boosting solar power generation of silicon-based photovoltaic modules.
    Leem JW; Choi M; Yu JS
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2349-58. PubMed ID: 25622310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A luminescent down-shifting and moth-eyed anti-reflective film for highly efficient photovoltaic devices.
    Ghymn YH; Jung K; Shin M; Ko H
    Nanoscale; 2015 Nov; 7(44):18642-50. PubMed ID: 26497718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reflection-type single long-pulse solar simulator for high-efficiency crystalline silicon photovoltaic modules.
    Hu B; Li B; Zhao R; Yang T
    Rev Sci Instrum; 2011 Jun; 82(6):065104. PubMed ID: 21721727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous broadband light trapping and fill factor enhancement in crystalline silicon solar cells induced by Ag nanoparticles and nanoshells.
    Fahim NF; Jia B; Shi Z; Gu M
    Opt Express; 2012 Sep; 20 Suppl 5():A694-705. PubMed ID: 23037536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal moth eye nanostructure array on transparent glass towards broadband antireflection.
    Ji S; Song K; Nguyen TB; Kim N; Lim H
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):10731-7. PubMed ID: 24116953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light trapping regimes in thin-film silicon solar cells with a photonic pattern.
    Zanotto S; Liscidini M; Andreani LC
    Opt Express; 2010 Mar; 18(5):4260-74. PubMed ID: 20389438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced conversion efficiency of a crystalline silicon solar cell with frustum nanorod arrays.
    Tsai MA; Tseng PC; Chen HC; Kuo HC; Yu P
    Opt Express; 2011 Jan; 19 Suppl 1():A28-34. PubMed ID: 21263709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High efficiency, broadband solar cell architectures based on arrays of volumetrically distributed narrowband photovoltaic fibers.
    O'Connor B; Nothern D; Pipe KP; Shtein M
    Opt Express; 2010 Sep; 18 Suppl 3():A432-43. PubMed ID: 21165073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical Study on Overcoming the Light-Harvesting Limitation of Lead-Free Cs
    Seo KH; Biswas S; Eun J; Kim H; Bae JH
    Nanomaterials (Basel); 2023 Nov; 13(23):. PubMed ID: 38063687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thin-film-based CdTe photovoltaic module characterization: measurements and energy prediction improvement.
    Lay-Ekuakille A; Arnesano A; Vergallo P
    Rev Sci Instrum; 2013 Jan; 84(1):015114. PubMed ID: 23387702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antireflective submicrometer gratings on thin-film silicon solar cells for light-absorption enhancement.
    Song YM; Yu JS; Lee YT
    Opt Lett; 2010 Feb; 35(3):276-8. PubMed ID: 20125693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance analysis of partially shaded high-efficiency mono PERC/mono crystalline PV module under indoor and environmental conditions.
    Kumari N; Singh SK; Kumar S; Jadoun VK
    Sci Rep; 2024 Sep; 14(1):21587. PubMed ID: 39285257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical Study on Broadband Antireflection of Moth-Eye Nanostructured Polymer Film with Flexible Polyethylene Terephthalate Substrate.
    Lan J; Yang Y; Hu S
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Concentrator photovoltaic module architectures with capabilities for capture and conversion of full global solar radiation.
    Lee KT; Yao Y; He J; Fisher B; Sheng X; Lumb M; Xu L; Anderson MA; Scheiman D; Han S; Kang Y; Gumus A; Bahabry RR; Lee JW; Paik U; Bronstein ND; Alivisatos AP; Meitl M; Burroughs S; Hussain MM; Lee JC; Nuzzo RG; Rogers JA
    Proc Natl Acad Sci U S A; 2016 Dec; 113(51):E8210-E8218. PubMed ID: 27930331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrodeposition of crystalline silicon films from silicon dioxide for low-cost photovoltaic applications.
    Zou X; Ji L; Ge J; Sadoway DR; Yu ET; Bard AJ
    Nat Commun; 2019 Dec; 10(1):5772. PubMed ID: 31852891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High efficiency thin-film crystalline Si/Ge tandem solar cell.
    Sun G; Chang F; Soref RA
    Opt Express; 2010 Feb; 18(4):3746-53. PubMed ID: 20389384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells.
    Mallick SB; Agrawal M; Peumans P
    Opt Express; 2010 Mar; 18(6):5691-706. PubMed ID: 20389585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solar concentrator modules with silicone-onglass Fresnel lens panels and multijunction cells.
    Rumyantsev VD
    Opt Express; 2010 Apr; 18(9):A17-24. PubMed ID: 20607883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solar concentrator modules with silicone-on-glass Fresnel lens panels and multijunction cells.
    Rumyantsev VD
    Opt Express; 2010 Apr; 18 Suppl 1():A17-24. PubMed ID: 20588569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.