These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 21445214)

  • 1. Phonon-mediated magnetic polaritons
in the infrared region.
    Wang LP; Zhang ZM
    Opt Express; 2011 Mar; 19 Suppl 2():A126-35. PubMed ID: 21445214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subwavelength-scale tailoring of surface phonon polaritons by focused ion-beam implantation.
    Ocelic N; Hillenbrand R
    Nat Mater; 2004 Sep; 3(9):606-9. PubMed ID: 15286756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-dimensional surface phonon polaritons in boron nitride nanotubes.
    Xu XG; Ghamsari BG; Jiang JH; Gilburd L; Andreev GO; Zhi C; Bando Y; Golberg D; Berini P; Walker GC
    Nat Commun; 2014 Aug; 5():4782. PubMed ID: 25154586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective Properties of Mid-Infrared Tamm Phonon-Polaritons Emitter with Silicon Carbide-Based Structures.
    Gong C; Zheng G
    Micromachines (Basel); 2022 Jun; 13(6):. PubMed ID: 35744534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infrared dipole antenna enhanced by surface phonon polaritons.
    Kim HC; Cheng X
    Opt Lett; 2010 Nov; 35(22):3748-50. PubMed ID: 21081984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards phonon photonics: scattering-type near-field optical microscopy reveals phonon-enhanced near-field interaction.
    Hillenbrand R
    Ultramicroscopy; 2004 Aug; 100(3-4):421-7. PubMed ID: 15231334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering the Spectral and Spatial Dispersion of Thermal Emission via Polariton-Phonon Strong Coupling.
    Lu G; Gubbin CR; Nolen JR; Folland T; Tadjer MJ; De Liberato S; Caldwell JD
    Nano Lett; 2021 Feb; 21(4):1831-1838. PubMed ID: 33587855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Near-Field Spectroscopy of Cylindrical Phonon-Polariton Antennas.
    Mancini A; Gubbin CR; Berté R; Martini F; Politi A; Cortés E; Li Y; De Liberato S; Maier SA
    ACS Nano; 2020 Jul; 14(7):8508-8517. PubMed ID: 32530605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupled One-Dimensional Plasmons and Two-Dimensional Phonon Polaritons in Hybrid Silver Nanowire/Silicon Carbide Structures.
    Joshi T; Kang JH; Jiang L; Wang S; Tarigo T; Lyu T; Kahn S; Shi Z; Shen YR; Crommie MF; Wang F
    Nano Lett; 2017 Jun; 17(6):3662-3667. PubMed ID: 28460175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Local excitation and interference of surface phonon polaritons studied by near-field infrared microscopy.
    Huber AJ; Ocelic N; Hillenbrand R
    J Microsc; 2008 Mar; 229(Pt 3):389-95. PubMed ID: 18331484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectrally Enhancing Near-Field Radiative Transfer between Metallic Gratings by Exciting Magnetic Polaritons in Nanometric Vacuum Gaps.
    Yang Y; Wang L
    Phys Rev Lett; 2016 Jul; 117(4):044301. PubMed ID: 27494474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Grating-coupled Otto configuration for hybridized surface phonon polariton excitation for local refractive index sensitivity enhancement.
    Pechprasarn S; Learkthanakhachon S; Zheng G; Shen H; Lei DY; Somekh MG
    Opt Express; 2016 Aug; 24(17):19517-30. PubMed ID: 27557229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid longitudinal-transverse phonon polaritons.
    Gubbin CR; Berte R; Meeker MA; Giles AJ; Ellis CT; Tischler JG; Wheeler VD; Maier SA; Caldwell JD; De Liberato S
    Nat Commun; 2019 Apr; 10(1):1682. PubMed ID: 30975986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resonant Enhancement of Second-Harmonic Generation in the Mid-Infrared Using Localized Surface Phonon Polaritons in Subdiffractional Nanostructures.
    Razdolski I; Chen Y; Giles AJ; Gewinner S; Schöllkopf W; Hong M; Wolf M; Giannini V; Caldwell JD; Maier SA; Paarmann A
    Nano Lett; 2016 Nov; 16(11):6954-6959. PubMed ID: 27766887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phonon-enhanced light matter interaction at the nanometre scale.
    Hillenbrand R; Taubner T; Keilmann F
    Nature; 2002 Jul; 418(6894):159-62. PubMed ID: 12110883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Realization of near-perfect absorption in the whole reststrahlen band of SiC.
    Chen D; Dong J; Yang J; Hua Y; Li G; Guo C; Xie C; Liu M; Liu Q
    Nanoscale; 2018 May; 10(20):9450-9454. PubMed ID: 29749414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical properties of single infrared resonant circular microcavities for surface phonon polaritons.
    Wang T; Li P; Hauer B; Chigrin DN; Taubner T
    Nano Lett; 2013 Nov; 13(11):5051-5. PubMed ID: 24117024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of coherent phonons with defects and elementary excitations.
    Hase M; Kitajima M
    J Phys Condens Matter; 2010 Feb; 22(7):073201. PubMed ID: 21386377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical coherent thermal emission by excitation of magnetic polariton in multilayer nanoshell trimer.
    Jia ZX; Shuai Y; Xu SD; Tan HP
    Opt Express; 2015 Sep; 23(19):A1096-110. PubMed ID: 26406740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coherent emission of light by thermal sources.
    Greffet JJ; Carminati R; Joulain K; Mulet JP; Mainguy S; Chen Y
    Nature; 2002 Mar; 416(6876):61-4. PubMed ID: 11882890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.