BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 21445442)

  • 21. A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells.
    Jang KJ; Suh KY
    Lab Chip; 2010 Jan; 10(1):36-42. PubMed ID: 20024048
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Three-dimensional interconnected microporous poly(dimethylsiloxane) microfluidic devices.
    Yuen PK; Su H; Goral VN; Fink KA
    Lab Chip; 2011 Apr; 11(8):1541-4. PubMed ID: 21359315
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Low density cell culture of locust neurons in closed-channel microfluidic devices.
    Göbbels K; Thiebes AL; van Ooyen A; Schnakenberg U; Bräunig P
    J Insect Physiol; 2010 Aug; 56(8):1003-9. PubMed ID: 20566412
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays.
    Hung PJ; Lee PJ; Sabounchi P; Lin R; Lee LP
    Biotechnol Bioeng; 2005 Jan; 89(1):1-8. PubMed ID: 15580587
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An actuated pump on-chip powered by cultured cardiomyocytes.
    Tanaka Y; Morishima K; Shimizu T; Kikuchi A; Yamato M; Okano T; Kitamori T
    Lab Chip; 2006 Mar; 6(3):362-8. PubMed ID: 16511618
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On-chip CO2 control for microfluidic cell culture.
    Forry SP; Locascio LE
    Lab Chip; 2011 Dec; 11(23):4041-6. PubMed ID: 21996787
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of an integrated microfluidic platform for dynamic oxygen sensing and delivery in a flowing medium.
    Vollmer AP; Probstein RF; Gilbert R; Thorsen T
    Lab Chip; 2005 Oct; 5(10):1059-66. PubMed ID: 16175261
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pumping-induced perturbation of flow in microfluidic channels and its implications for on-chip cell culture.
    Zhou J; Ren K; Dai W; Zhao Y; Ryan D; Wu H
    Lab Chip; 2011 Jul; 11(13):2288-94. PubMed ID: 21603722
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Diffusion dependent cell behavior in microenvironments.
    Yu H; Meyvantsson I; Shkel IA; Beebe DJ
    Lab Chip; 2005 Oct; 5(10):1089-95. PubMed ID: 16175265
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Continuous flow separation of particles within an asymmetric microfluidic device.
    Zhang X; Cooper JM; Monaghan PB; Haswell SJ
    Lab Chip; 2006 Apr; 6(4):561-6. PubMed ID: 16572220
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In-situ measurement of cellular microenvironments in a microfluidic device.
    Lin Z; Cherng-Wen T; Roy P; Trau D
    Lab Chip; 2009 Jan; 9(2):257-62. PubMed ID: 19107282
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis of agar microparticles using temperature-controlled microfluidic devices for Cordyceps militaris cultivation.
    Lin YS; Yang CH; Lu K; Huang KS; Zheng YZ
    Electrophoresis; 2011 Nov; 32(22):3157-63. PubMed ID: 22012813
    [TBL] [Abstract][Full Text] [Related]  

  • 33. How to embed three-dimensional flexible electrodes in microfluidic devices for cell culture applications.
    Pavesi A; Piraino F; Fiore GB; Farino KM; Moretti M; Rasponi M
    Lab Chip; 2011 May; 11(9):1593-5. PubMed ID: 21437315
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulating oxygen levels in a microfluidic device.
    Thomas PC; Raghavan SR; Forry SP
    Anal Chem; 2011 Nov; 83(22):8821-4. PubMed ID: 21995289
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cell culture chip using low-shear mass transport.
    Liu K; Pitchimani R; Dang D; Bayer K; Harrington T; Pappas D
    Langmuir; 2008 Jun; 24(11):5955-60. PubMed ID: 18471001
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of high throughput optical sensor array for on-line pH monitoring in micro-scale cell culture environment.
    Wu MH; Lin JL; Wang J; Cui Z; Cui Z
    Biomed Microdevices; 2009 Feb; 11(1):265-73. PubMed ID: 18830696
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Perfusion culture of mammalian cells in a microfluidic channel with a built-in pillar array.
    Zhang C
    Methods Mol Biol; 2012; 853():83-94. PubMed ID: 22323142
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Micro pumping with cardiomyocyte-polymer hybrid.
    Park J; Kim IC; Baek J; Cha M; Kim J; Park S; Lee J; Kim B
    Lab Chip; 2007 Oct; 7(10):1367-70. PubMed ID: 17896023
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Controlling flow in microfluidic channels with a manually actuated pin valve.
    Brett ME; Zhao S; Stoia JL; Eddington DT
    Biomed Microdevices; 2011 Aug; 13(4):633-9. PubMed ID: 21472409
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A novel high aspect ratio microfluidic design to provide a stable and uniform microenvironment for cell growth in a high throughput mammalian cell culture array.
    Hung PJ; Lee PJ; Sabounchi P; Aghdam N; Lin R; Lee LP
    Lab Chip; 2005 Jan; 5(1):44-8. PubMed ID: 15616739
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.