BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 21445444)

  • 1. Optical tweezers directed one-bead one-sequence synthesis of oligonucleotides.
    Wang T; Oehrlein S; Somoza MM; Perez JR; Kershner R; Cerrina F
    Lab Chip; 2011 May; 11(9):1629-37. PubMed ID: 21445444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-chip oligonucleotide ligation assay using one-dimensional microfluidic beads array for the detection of low-abundant DNA point mutations.
    Zhang H; Yang X; Wang K; Tan W; Li H; Zuo X; Wen J
    Biosens Bioelectron; 2008 Feb; 23(7):945-51. PubMed ID: 17983740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct manipulation and observation of the rotational motion of single optically trapped microparticles and biological cells in microvortices.
    Shelby JP; Mutch SA; Chiu DT
    Anal Chem; 2004 May; 76(9):2492-7. PubMed ID: 15117188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous cytometric bead processing within a microfluidic device for bead based sensing platforms.
    Yang S; Undar A; Zahn JD
    Lab Chip; 2007 May; 7(5):588-95. PubMed ID: 17476377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic array cytometer based on refractive optical tweezers for parallel trapping, imaging and sorting of individual cells.
    Werner M; Merenda F; Piguet J; Salathé RP; Vogel H
    Lab Chip; 2011 Jul; 11(14):2432-9. PubMed ID: 21655617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A microfluidic system with optical laser tweezers to study mechanotransduction and focal adhesion recruitment.
    Honarmandi P; Lee H; Lang MJ; Kamm RD
    Lab Chip; 2011 Feb; 11(4):684-94. PubMed ID: 21152510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pinched flow fractionation devices for detection of single nucleotide polymorphisms.
    Larsen AV; Poulsen L; Birgens H; Dufva M; Kristensen A
    Lab Chip; 2008 May; 8(5):818-21. PubMed ID: 18432355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A microfluidic device with microbead array for sensitive virus detection and genotyping using quantum dots as fluorescence labels.
    Zhang H; Xu T; Li CW; Yang M
    Biosens Bioelectron; 2010 Jul; 25(11):2402-7. PubMed ID: 20483585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomolecular theorem proving on a chip: a novel microfluidic solution to a classical logic problem.
    Lee SH; van Noort D; Yang KA; Lee IH; Zhang BT; Park TH
    Lab Chip; 2012 Apr; 12(10):1841-8. PubMed ID: 22441410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different strategies of covalent attachment of oligonucleotide probe onto glass beads and the hybridization properties.
    Sheng H; Ye BC
    Appl Biochem Biotechnol; 2009 Jan; 152(1):54-65. PubMed ID: 18491234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining multiple optical trapping with microflow manipulation for the rapid bioanalytics on microparticles in a chip.
    Boer G; Johann R; Rohner J; Merenda F; Delacrétaz G; Renaud P; Salathé RP
    Rev Sci Instrum; 2007 Nov; 78(11):116101. PubMed ID: 18052509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combinational synthesis of oligonucleotides and assembly fabrication of oligonucleotide array.
    Xiao PF; Wang ZF; Guo HS; He NY; Lu ZH
    Colloids Surf B Biointerfaces; 2005 Feb; 40(3-4):165-8. PubMed ID: 15708507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterisation of spatial and temporal changes in pH gradients in microfluidic channels using optically trapped fluorescent sensors.
    Klauke N; Monaghan P; Sinclair G; Padgett M; Cooper J
    Lab Chip; 2006 Jun; 6(6):788-93. PubMed ID: 16738732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bead-based immunoassays using a micro-chip flow cytometer.
    Holmes D; She JK; Roach PL; Morgan H
    Lab Chip; 2007 Aug; 7(8):1048-56. PubMed ID: 17653348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic sorting with a moving array of optical traps.
    Dasgupta R; Ahlawat S; Gupta PK
    Appl Opt; 2012 Jul; 51(19):4377-87. PubMed ID: 22772110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Telomerase catalyzed fluorescent probes for sensitive protein profiling based on one-dimensional microfluidic beads array.
    Wen J; Yang X; Wang K; Tan W; Zuo X; Zhang H
    Biosens Bioelectron; 2008 Jul; 23(12):1788-92. PubMed ID: 18387290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A photonic-microfluidic integrated device for reliable fluorescence detection and counting.
    Watts BR; Zhang Z; Xu CQ; Cao X; Lin M
    Electrophoresis; 2012 Nov; 33(21):3236-44. PubMed ID: 23065957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Joule heating monitoring in a microfluidic channel by observing the Brownian motion of an optically trapped microsphere.
    Brans T; Strubbe F; Schreuer C; Vandewiele S; Neyts K; Beunis F
    Electrophoresis; 2015 Sep; 36(17):2102-9. PubMed ID: 25963750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A dynamic microarray device for paired bead-based analysis.
    Teshima T; Ishihara H; Iwai K; Adachi A; Takeuchi S
    Lab Chip; 2010 Sep; 10(18):2443-8. PubMed ID: 20697655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic patterning of miniaturized DNA arrays on plastic substrates.
    Geissler M; Roy E; Diaz-Quijada GA; Galas JC; Veres T
    ACS Appl Mater Interfaces; 2009 Jul; 1(7):1387-95. PubMed ID: 20355940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.