These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 21445539)

  • 21. Environmental isotopes as a useful tool for studies at mixed uranium mill tailings sites.
    Helling C
    Isotopes Environ Health Stud; 2000; 36(3):211-22. PubMed ID: 11501701
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Distribution and behaviour of naturally occurring radionuclides within a Scots pine forest grown on a CaF
    Vanhoudt N; Van Gompel A; Vives I Batlle J
    J Environ Radioact; 2021 Jul; 233():106591. PubMed ID: 33798812
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Elimination of natural uranium and (226)Ra from contaminated waters by rhizofiltration using Helianthus annuus L.
    Tomé FV; Rodríguez PB; Lozano JC
    Sci Total Environ; 2008 Apr; 393(2-3):351-7. PubMed ID: 18272206
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Life strategies in intra-annual dynamics of wood formation: example of three conifer species in a temperate forest in north-east France.
    Cuny HE; Rathgeber CB; Lebourgeois F; Fortin M; Fournier M
    Tree Physiol; 2012 May; 32(5):612-25. PubMed ID: 22543476
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Radionuclides distribution, properties, and microbial diversity of soils in uranium mill tailings from southeastern China.
    Yan X; Luo X
    J Environ Radioact; 2015 Jan; 139():85-90. PubMed ID: 25464044
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Combined U-Pb isotopic signatures of U mill tailings from France and Gabon: A new potential tracer to assess their fingerprint on the environment.
    Beaumais A; Mangeret A; Suhard D; Blanchart P; Neji M; Cazala C; Gourgiotis A
    J Hazard Mater; 2022 May; 430():128484. PubMed ID: 35739667
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multiple environmental factors influence
    Davies HS; Rosas-Moreno J; Cox F; Lythgoe P; Bewsher A; Livens FR; Robinson CH; Pittman JK
    Sci Total Environ; 2018 Nov; 640-641():921-934. PubMed ID: 30021326
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Radiological impacts of phosphogypsum.
    Al Attar L; Al-Oudat M; Kanakri S; Budeir Y; Khalily H; Al Hamwi A
    J Environ Manage; 2011 Sep; 92(9):2151-8. PubMed ID: 21530064
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Geochemical Distribution and Environmental Risks of Radionuclides in Soils and Sediments Runoff of a Uranium Mining Area in South China.
    Li H; Wang Q; Zhang C; Su W; Ma Y; Zhong Q; Xiao E; Xia F; Zheng G; Xiao T
    Toxics; 2024 Jan; 12(1):. PubMed ID: 38276730
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantifying historical releases and pre-operation levels of metals and radionuclides.
    Sauvé D; Clulow V; Goulet RR
    J Environ Radioact; 2021 Oct; 237():106683. PubMed ID: 34311293
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Natural radioactivity, dose assessment and uranium uptake by agricultural crops at Khan Al-Zabeeb, Jordan.
    Al-Kharouf SJ; Al-Hamarneh IF; Dababneh M
    J Environ Radioact; 2008 Jul; 99(7):1192-9. PubMed ID: 18359539
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantification of U, Th and specific radionuclides in coal from selected coal fired power plants in South Africa.
    Ahmed UAQ; Wagner NJ; Joubert JA
    PLoS One; 2020; 15(5):e0229452. PubMed ID: 32357150
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Environmental survey of uranium mill tailings pile, Tuba City, Arizona.
    Radiol Health Data Rep; 1969 Nov; 10(11):475-87. PubMed ID: 5358021
    [No Abstract]   [Full Text] [Related]  

  • 34. Escaping radioactivity from coal-fired power plants (CPPs) due to coal burning and the associated hazards: a review.
    Papastefanou C
    J Environ Radioact; 2010 Mar; 101(3):191-200. PubMed ID: 20005612
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Soil to plant transfer of 238U, 226Ra and 232Th on a uranium mining-impacted soil from southeastern China.
    Chen SB; Zhu YG; Hu QH
    J Environ Radioact; 2005; 82(2):223-36. PubMed ID: 15878419
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Radium-226 transfer factor from soils to crops and its simple estimation method using uranium and barium concentrations.
    Tagami K; Uchida S
    Chemosphere; 2009 Sep; 77(1):105-14. PubMed ID: 19501875
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transfer of natural radionuclides from hay and silage to cow's milk in the vicinity of a former uranium mine.
    Strok M; Smodiš B
    J Environ Radioact; 2012 Aug; 110():64-8. PubMed ID: 22387974
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Element interactions and soil properties affecting the soil-to-plant transfer of six elements relevant to radioactive waste in boreal forest.
    Roivainen P; Makkonen S; Holopainen T; Juutilainen J
    Radiat Environ Biophys; 2012 Mar; 51(1):69-78. PubMed ID: 22130976
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bioaccessibility of U, Th and Pb in solid wastes and soils from an abandoned uranium mine.
    Foulkes M; Millward G; Henderson S; Blake W
    J Environ Radioact; 2017 Jul; 173():85-96. PubMed ID: 27979647
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Uranium isotopes in tree bark as a spatial tracer of environmental contamination near former uranium processing facilities in southwest Ohio.
    Conte E; Widom E; Kuentz D
    J Environ Radioact; 2017 Nov; 178-179():265-278. PubMed ID: 28918084
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.