These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 21445769)

  • 1. Measuring oxygen in living tissue: intravascular, interstitial, and "tissue" oxygen measurements.
    Wilson DF; Finikova OS; Lebedev AY; Apreleva S; Pastuszko A; Lee WM; Vinogradov SA
    Adv Exp Med Biol; 2011; 701():53-9. PubMed ID: 21445769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen pressures in the interstitial space and their relationship to those in the blood plasma in resting skeletal muscle.
    Wilson DF; Lee WM; Makonnen S; Finikova O; Apreleva S; Vinogradov SA
    J Appl Physiol (1985); 2006 Dec; 101(6):1648-56. PubMed ID: 16888050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxygen pressures in the interstitial space of skeletal muscle and tumors in vivo.
    Wilson DF; Lee WM; Makonnen S; Apreleva S; Vinogradov SA
    Adv Exp Med Biol; 2008; 614():53-62. PubMed ID: 18290314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New phosphorescence quenching oxygen measurements technique yields unusual tissue and plasma PO2 distributions.
    Tsai AG; Cabrales P; Johnson PC; Intaglietta M
    J Appl Physiol (1985); 2007 May; 102(5):2081-2; author reply 2083. PubMed ID: 17483445
    [No Abstract]   [Full Text] [Related]  

  • 5. Skeletal muscle microvascular and interstitial PO2 from rest to contractions.
    Hirai DM; Craig JC; Colburn TD; Eshima H; Kano Y; Sexton WL; Musch TI; Poole DC
    J Physiol; 2018 Mar; 596(5):869-883. PubMed ID: 29288568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microvascular and interstitial PO(2) measurements in rat skeletal muscle by phosphorescence quenching.
    Shibata M; Ichioka S; Ando J; Kamiya A
    J Appl Physiol (1985); 2001 Jul; 91(1):321-7. PubMed ID: 11408447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcapillary PO
    Colburn TD; Hirai DM; Craig JC; Ferguson SK; Weber RE; Schulze KM; Behnke BJ; Musch TI; Poole DC
    J Physiol; 2020 Aug; 598(15):3187-3202. PubMed ID: 32445225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Skeletal muscle interstitial O
    Hirai DM; Colburn TD; Craig JC; Hotta K; Kano Y; Musch TI; Poole DC
    Microcirculation; 2019 Jul; 26(5):e12497. PubMed ID: 30120845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Skeletal muscle interstitial Po
    Hirai DM; Craig JC; Colburn TD; Eshima H; Kano Y; Musch TI; Poole DC
    J Appl Physiol (1985); 2019 Oct; 127(4):930-939. PubMed ID: 31369325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen tension distribution in postcapillary venules in resting skeletal muscle.
    Saltzman DJ; Toth A; Tsai AG; Intaglietta M; Johnson PC
    Am J Physiol Heart Circ Physiol; 2003 Nov; 285(5):H1980-5. PubMed ID: 12842813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxygen distribution in murine tumors: characterization using oxygen-dependent quenching of phosphorescence.
    Ziemer LS; Lee WM; Vinogradov SA; Sehgal C; Wilson DF
    J Appl Physiol (1985); 2005 Apr; 98(4):1503-10. PubMed ID: 15579567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interstitial IgG antibody pharmacokinetics assessed by combined in vivo- and physiologically-based pharmacokinetic modelling approaches.
    Eigenmann MJ; Karlsen TV; Krippendorff BF; Tenstad O; Fronton L; Otteneder MB; Wiig H
    J Physiol; 2017 Dec; 595(24):7311-7330. PubMed ID: 28960303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of interstitial pressure on tumor growth: coupling with the blood and lymphatic vascular systems.
    Wu M; Frieboes HB; McDougall SR; Chaplain MA; Cristini V; Lowengrub J
    J Theor Biol; 2013 Mar; 320():131-51. PubMed ID: 23220211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Critical PO(2) of skeletal muscle in vivo.
    Richmond KN; Shonat RD; Lynch RM; Johnson PC
    Am J Physiol; 1999 Nov; 277(5):H1831-40. PubMed ID: 10564137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation of interstitial fluid from skeletal muscle and subcutis in mice using a wick method.
    Markhus CE; Wiig H
    Am J Physiol Heart Circ Physiol; 2004 Nov; 287(5):H2085-90. PubMed ID: 15217798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arterioles' contribution to oxygen supply to the skeletal muscles at rest.
    Shibata M; Ichioka S; Togawa T; Kamiya A
    Eur J Appl Physiol; 2006 Jun; 97(3):327-31. PubMed ID: 16770469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. VEGF gradients, receptor activation, and sprout guidance in resting and exercising skeletal muscle.
    Mac Gabhann F; Ji JW; Popel AS
    J Appl Physiol (1985); 2007 Feb; 102(2):722-34. PubMed ID: 17038488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxygen tension gradients and heterogeneity in venous microcirculation: a phosphorescence quenching study.
    Shonat RD; Johnson PC
    Am J Physiol; 1997 May; 272(5 Pt 2):H2233-40. PubMed ID: 9176291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interstitial and plasma adenosine stimulate nitric oxide and prostacyclin formation in human skeletal muscle.
    Nyberg M; Mortensen SP; Thaning P; Saltin B; Hellsten Y
    Hypertension; 2010 Dec; 56(6):1102-8. PubMed ID: 21041702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sexual dimorphism in the control of skeletal muscle interstitial Po
    Craig JC; Colburn TD; Hirai DM; Musch TI; Poole DC
    J Appl Physiol (1985); 2019 May; 126(5):1184-1192. PubMed ID: 30844332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.