BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 21445781)

  • 1. Effect of AEM energy applicator configuration on magnetic nanoparticle mediated hyperthermia for breast cancer.
    Sanapala KK; Hewaparakrama K; Kang KA
    Adv Exp Med Biol; 2011; 701():143-8. PubMed ID: 21445781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of carboplatin-Fe@C-loaded chitosan nanoparticles and study on hyperthermia combined with pharmacotherapy for liver cancer.
    Li FR; Yan WH; Guo YH; Qi H; Zhou HX
    Int J Hyperthermia; 2009 Aug; 25(5):383-91. PubMed ID: 19391033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia.
    Fortin JP; Wilhelm C; Servais J; Ménager C; Bacri JC; Gazeau F
    J Am Chem Soc; 2007 Mar; 129(9):2628-35. PubMed ID: 17266310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration.
    Rodrigues HF; Mello FM; Branquinho LC; Zufelato N; Silveira-Lacerda EP; Bakuzis AF
    Int J Hyperthermia; 2013 Dec; 29(8):752-67. PubMed ID: 24138472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Focused RF hyperthermia using magnetic fluids.
    Tasci TO; Vargel I; Arat A; Guzel E; Korkusuz P; Atalar E
    Med Phys; 2009 May; 36(5):1906-12. PubMed ID: 19544810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of magnetic nanoparticle heating in the treatment of breast cancer.
    Hilger I; Hergt R; Kaiser WA
    IEE Proc Nanobiotechnol; 2005 Feb; 152(1):33-9. PubMed ID: 16441156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of heat dissipation of superparamagnetic nanoparticles in alternating magnetic field on three human cancer cell lines in magnetic fluid hyperthermia.
    Attar MM; Haghpanahi M
    Electromagn Biol Med; 2016; 35(4):305-20. PubMed ID: 27015154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique.
    Johannsen M; Gneveckow U; Eckelt L; Feussner A; Waldöfner N; Scholz R; Deger S; Wust P; Loening SA; Jordan A
    Int J Hyperthermia; 2005 Nov; 21(7):637-47. PubMed ID: 16304715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterially synthesized ferrite nanoparticles for magnetic hyperthermia applications.
    Céspedes E; Byrne JM; Farrow N; Moise S; Coker VS; Bencsik M; Lloyd JR; Telling ND
    Nanoscale; 2014 Nov; 6(21):12958-70. PubMed ID: 25232657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of monodisperse magnetic nanorods for improving hyperthermia efficacy.
    Zhao S; Hao N; Zhang JXJ; Hoopes PJ; Shubitidze F; Chen Z
    J Nanobiotechnology; 2021 Mar; 19(1):63. PubMed ID: 33648501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation and experimental studies on magnetic hyperthermia with use of superparamagnetic iron oxide nanoparticles.
    Murase K; Oonoki J; Takata H; Song R; Angraini A; Ausanai P; Matsushita T
    Radiol Phys Technol; 2011 Jul; 4(2):194-202. PubMed ID: 21667079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tumor-specific nano-entities for optical detection and hyperthermic treatment of breast cancer.
    Jin H; Hong B; Kakar SS; Kang KA
    Adv Exp Med Biol; 2008; 614():275-84. PubMed ID: 18290338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localised heating of tumours utilising injectable magnetic nanoparticles for hyperthermia cancer therapy.
    Tseng HY; Lee GB; Lee CY; Shih YH; Lin XZ
    IET Nanobiotechnol; 2009 Jun; 3(2):46-54. PubMed ID: 19485552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of novel metal nanoparticles as optical/thermal agents in optical mammography and hyperthermic treatment for breast cancer.
    Jin H; Kang KA
    Adv Exp Med Biol; 2007; 599():45-52. PubMed ID: 17727246
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Ognjanović M; Radović M; Mirković M; Prijović Ž; Puerto Morales MD; Čeh M; Vranješ-Đurić S; Antić B
    ACS Appl Mater Interfaces; 2019 Nov; 11(44):41109-41117. PubMed ID: 31610125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and characterization of monodispersed water dispersible Fe
    Sharma KS; Ningthoujam RS; Dubey AK; Chattopadhyay A; Phapale S; Juluri RR; Mukherjee S; Tewari R; Shetake NG; Pandey BN; Vatsa RK
    Sci Rep; 2018 Oct; 8(1):14766. PubMed ID: 30283083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of a single optimized coil and a Helmholtz pair for magnetic nanoparticle hyperthermia.
    Nieskoski MD; Trembly BS
    IEEE Trans Biomed Eng; 2014 Jun; 61(6):1642-50. PubMed ID: 24691525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A frequency-adjustable electromagnet for hyperthermia measurements on magnetic nanoparticles.
    Lacroix LM; Carrey J; Respaud M
    Rev Sci Instrum; 2008 Sep; 79(9):093909. PubMed ID: 19044430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of magnetic nanoparticle and microwave hyperthermia cancer treatment methodology and treatment effect in a rodent breast cancer model.
    Petryk AA; Giustini AJ; Gottesman RE; Trembly BS; Hoopes PJ
    Int J Hyperthermia; 2013 Dec; 29(8):819-27. PubMed ID: 24219799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic nanoparticle hyperthermia for prostate cancer.
    Johannsen M; Thiesen B; Wust P; Jordan A
    Int J Hyperthermia; 2010; 26(8):790-5. PubMed ID: 20653418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.