BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 21445939)

  • 1. Rapid transfer-based micropatterning and dry etching of silk microstructures.
    Tsioris K; Tao H; Liu M; Hopwood JA; Kaplan DL; Averitt RD; Omenetto FG
    Adv Mater; 2011 May; 23(17):2015-9. PubMed ID: 21445939
    [No Abstract]   [Full Text] [Related]  

  • 2. Silk protein lithography as a route to fabricate sericin microarchitectures.
    Kurland NE; Dey T; Wang C; Kundu SC; Yadavalli VK
    Adv Mater; 2014 Jul; 26(26):4431-7. PubMed ID: 24737390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. "Print-to-pattern": Silk-Based Water Lithography.
    Liu Z; Zhou Z; Zhang S; Sun L; Shi Z; Mao Y; Liu K; Tao TH
    Small; 2018 Nov; 14(47):e1802953. PubMed ID: 30277661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. M³: Microscope-based maskless micropatterning with dry film photoresist.
    Leigh SY; Tattu A; Mitchell JS; Entcheva E
    Biomed Microdevices; 2011 Apr; 13(2):375-81. PubMed ID: 21190086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactive Inkjet Printing of Biocompatible Enzyme Powered Silk Micro-Rockets.
    Gregory DA; Zhang Y; Smith PJ; Zhao X; Ebbens SJ
    Small; 2016 Aug; 12(30):4048-55. PubMed ID: 27345008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid prototyping of microstructures in polydimethylsiloxane (PDMS) by direct UV-lithography.
    Scharnweber T; Truckenmüller R; Schneider AM; Welle A; Reinhardt M; Giselbrecht S
    Lab Chip; 2011 Apr; 11(7):1368-71. PubMed ID: 21327278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Versatile methods for the fabrication of polyvinylidene fluoride microstructures.
    Gallego-Perez D; Ferrell NJ; Higuita-Castro N; Hansford DJ
    Biomed Microdevices; 2010 Dec; 12(6):1009-17. PubMed ID: 20700656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A chitin nanofiber ink for airbrushing, replica molding, and microcontact printing of self-assembled macro-, micro-, and nanostructures.
    Zhong C; Kapetanovic A; Deng Y; Rolandi M
    Adv Mater; 2011 Nov; 23(41):4776-81. PubMed ID: 21948304
    [No Abstract]   [Full Text] [Related]  

  • 9. Transfer printing techniques for materials assembly and micro/nanodevice fabrication.
    Carlson A; Bowen AM; Huang Y; Nuzzo RG; Rogers JA
    Adv Mater; 2012 Oct; 24(39):5284-318. PubMed ID: 22936418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transfer Printing of Metallic Microstructures on Adhesion-Promoting Hydrogel Substrates.
    Wu H; Sariola V; Zhu C; Zhao J; Sitti M; Bettinger CJ
    Adv Mater; 2015 Jun; 27(22):3398-404. PubMed ID: 25903565
    [No Abstract]   [Full Text] [Related]  

  • 11. Reactive Inkjet Printing of Functional Silk Stirrers for Enhanced Mixing and Sensing.
    Zhang Y; Gregory DA; Zhang Y; Smith PJ; Ebbens SJ; Zhao X
    Small; 2019 Jan; 15(1):e1804213. PubMed ID: 30515976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical interference lithography using azobenzene-functionalized polymers for micro- and nanopatterning of silicon.
    Kravchenko A; Shevchenko A; Ovchinnikov V; Priimagi A; Kaivola M
    Adv Mater; 2011 Sep; 23(36):4174-7. PubMed ID: 21823180
    [No Abstract]   [Full Text] [Related]  

  • 13. Extrusion-based printing of sacrificial Carbopol ink for fabrication of microfluidic devices.
    Ozbolat V; Dey M; Ayan B; Ozbolat IT
    Biofabrication; 2019 Apr; 11(3):034101. PubMed ID: 30884470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-fidelity chemical patterning on oxide-free germanium.
    Hohman JN; Kim M; Lawrence JA; McClanahan PD; Weiss PS
    J Phys Condens Matter; 2012 Apr; 24(16):164214. PubMed ID: 22466616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microdrop printing of hydrogel bioinks into 3D tissue-like geometries.
    Pataky K; Braschler T; Negro A; Renaud P; Lutolf MP; Brugger J
    Adv Mater; 2012 Jan; 24(3):391-6. PubMed ID: 22161949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soft Lithography, Molding, and Micromachining Techniques for Polymer Micro Devices.
    Sen AK; Raj A; Banerjee U; Iqbal SR
    Methods Mol Biol; 2019; 1906():13-54. PubMed ID: 30488383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fishing DNA targets in DNA solutions by using affinity microcontact printing.
    Chen CH; Yang KL
    Analyst; 2011 Feb; 136(4):733-9. PubMed ID: 21116560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scalable fabrication of strongly textured organic semiconductor micropatterns by capillary force lithography.
    Jo PS; Vailionis A; Park YM; Salleo A
    Adv Mater; 2012 Jun; 24(24):3269-74. PubMed ID: 22605625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of silk mesh with enhanced cytocompatibility: preliminary in vitro investigation toward cell-based therapy for hernia repair.
    Guillaume O; Park J; Monforte X; Gruber-Blum S; Redl H; Petter-Puchner A; Teuschl AH
    J Mater Sci Mater Med; 2016 Feb; 27(2):37. PubMed ID: 26704554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Research highlights: printing the future of microfabrication.
    Tseng P; Murray C; Kim D; Di Carlo D
    Lab Chip; 2014 May; 14(9):1491-5. PubMed ID: 24671475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.