These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 21445951)

  • 1. Open season for hunting and trapping post-translational cysteine modifications in proteins and enzymes.
    Jacob C; Ba LA
    Chembiochem; 2011 Apr; 12(6):841-4. PubMed ID: 21445951
    [No Abstract]   [Full Text] [Related]  

  • 2. Quantification of protein sulfenic acid modifications using isotope-coded dimedone and iododimedone.
    Seo YH; Carroll KS
    Angew Chem Int Ed Engl; 2011 Feb; 50(6):1342-5. PubMed ID: 21290508
    [No Abstract]   [Full Text] [Related]  

  • 3. Expanding the functional diversity of proteins through cysteine oxidation.
    Reddie KG; Carroll KS
    Curr Opin Chem Biol; 2008 Dec; 12(6):746-54. PubMed ID: 18804173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of the cysteine sulfenic acid O-sulfenylation of 1,3-cyclohexanedione.
    Freeman F
    Chem Commun (Camb); 2014 Apr; 50(31):4102-4. PubMed ID: 24619216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thiol-blocking electrophiles interfere with labeling and detection of protein sulfenic acids.
    Reisz JA; Bechtold E; King SB; Poole LB; Furdui CM
    FEBS J; 2013 Dec; 280(23):6150-61. PubMed ID: 24103186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Typical 2-Cys peroxiredoxins--modulation by covalent transformations and noncovalent interactions.
    Aran M; Ferrero DS; Pagano E; Wolosiuk RA
    FEBS J; 2009 May; 276(9):2478-93. PubMed ID: 19476489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A genetically encoded probe for cysteine sulfenic acid protein modification in vivo.
    Takanishi CL; Ma LH; Wood MJ
    Biochemistry; 2007 Dec; 46(50):14725-32. PubMed ID: 18020457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of oxidative posttranslational cysteine modifications: from intricate chemistry to widespread biological and medical applications.
    Jacob C; Battaglia E; Burkholz T; Peng D; Bagrel D; Montenarh M
    Chem Res Toxicol; 2012 Mar; 25(3):588-604. PubMed ID: 22106817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactive sulfur species: kinetics and mechanisms of the oxidation of cysteine by hypohalous acid to give cysteine sulfenic acid.
    Nagy P; Ashby MT
    J Am Chem Soc; 2007 Nov; 129(45):14082-91. PubMed ID: 17939659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DYn-2 Based Identification of Arabidopsis Sulfenomes.
    Akter S; Huang J; Bodra N; De Smet B; Wahni K; Rombaut D; Pauwels J; Gevaert K; Carroll K; Van Breusegem F; Messens J
    Mol Cell Proteomics; 2015 May; 14(5):1183-200. PubMed ID: 25693797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein carbonylation: 2,4-dinitrophenylhydrazine reacts with both aldehydes/ketones and sulfenic acids.
    Dalle-Donne I; Carini M; Orioli M; Vistoli G; Regazzoni L; Colombo G; Rossi R; Milzani A; Aldini G
    Free Radic Biol Med; 2009 May; 46(10):1411-9. PubMed ID: 19268703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein topology determines cysteine oxidation fate: the case of sulfenyl amide formation among protein families.
    Defelipe LA; Lanzarotti E; Gauto D; Marti MA; Turjanski AG
    PLoS Comput Biol; 2015 Mar; 11(3):e1004051. PubMed ID: 25741692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical dissection of an essential redox switch in yeast.
    Paulsen CE; Carroll KS
    Chem Biol; 2009 Feb; 16(2):217-25. PubMed ID: 19230722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteome screens for Cys residues oxidation: the redoxome.
    Chiappetta G; Ndiaye S; Igbaria A; Kumar C; Vinh J; Toledano MB
    Methods Enzymol; 2010; 473():199-216. PubMed ID: 20513479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein S-sulfenylation is a fleeting molecular switch that regulates non-enzymatic oxidative folding.
    Beedle AE; Lynham S; Garcia-Manyes S
    Nat Commun; 2016 Aug; 7():12490. PubMed ID: 27546612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A periplasmic reducing system protects single cysteine residues from oxidation.
    Depuydt M; Leonard SE; Vertommen D; Denoncin K; Morsomme P; Wahni K; Messens J; Carroll KS; Collet JF
    Science; 2009 Nov; 326(5956):1109-11. PubMed ID: 19965429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Possibilities and pitfalls in quantifying the extent of cysteine sulfenic acid modification of specific proteins within complex biofluids.
    Rehder DS; Borges CR
    BMC Biochem; 2010 Jul; 11():25. PubMed ID: 20594348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic and chemical competence of regulation of cdc25 phosphatase by oxidation/reduction.
    Sohn J; Rudolph J
    Biochemistry; 2003 Sep; 42(34):10060-70. PubMed ID: 12939134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detecting oxidative post-translational modifications in proteins.
    Gianazza E; Crawford J; Miller I
    Amino Acids; 2007 Jul; 33(1):51-6. PubMed ID: 17021655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of human protein function from post-translational modifications and localization features.
    Jensen LJ; Gupta R; Blom N; Devos D; Tamames J; Kesmir C; Nielsen H; Staerfeldt HH; Rapacki K; Workman C; Andersen CA; Knudsen S; Krogh A; Valencia A; Brunak S
    J Mol Biol; 2002 Jun; 319(5):1257-65. PubMed ID: 12079362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.