These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 21445951)

  • 41. Aspects of the biological redox chemistry of cysteine: from simple redox responses to sophisticated signalling pathways.
    Jacob C; Knight I; Winyard PG
    Biol Chem; 2006; 387(10-11):1385-97. PubMed ID: 17081111
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cysteine Oxidation in Proteins: Structure, Biophysics, and Simulation.
    Garrido Ruiz D; Sandoval-Perez A; Rangarajan AV; Gunderson EL; Jacobson MP
    Biochemistry; 2022 Oct; 61(20):2165-2176. PubMed ID: 36161872
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Orphan PTMs: Rare, yet functionally important modifications of cysteine.
    Shannon DA; Weerapana E
    Biopolymers; 2014 Feb; 101(2):156-64. PubMed ID: 23564220
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Lacticin 481: in vitro reconstitution of lantibiotic synthetase activity.
    Xie L; Miller LM; Chatterjee C; Averin O; Kelleher NL; van der Donk WA
    Science; 2004 Jan; 303(5658):679-81. PubMed ID: 14752162
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Synthesis of chemical probes to map sulfenic acid modifications on proteins.
    Poole LB; Zeng BB; Knaggs SA; Yakubu M; King SB
    Bioconjug Chem; 2005; 16(6):1624-8. PubMed ID: 16287263
    [TBL] [Abstract][Full Text] [Related]  

  • 46. In situ visualization and detection of protein sulfenylation responses in living cells through a dimedone-based fluorescent probe.
    Yin Q; Huang C; Zhang C; Zhu W; Xu Y; Qian X; Yang Y
    Org Biomol Chem; 2013 Nov; 11(43):7566-73. PubMed ID: 24097070
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Surface accessibility of protein post-translational modifications.
    Pang CN; Hayen A; Wilkins MR
    J Proteome Res; 2007 May; 6(5):1833-45. PubMed ID: 17428077
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B.
    van Montfort RL; Congreve M; Tisi D; Carr R; Jhoti H
    Nature; 2003 Jun; 423(6941):773-7. PubMed ID: 12802339
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Can cysteine direct tyrosine in signal transduction for environment-oriented gene control?
    Nakashima I
    Nagoya J Med Sci; 1996 Mar; 59(1-2):1-10. PubMed ID: 8725482
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Proteomic profiling of perturbed protein sulfenation in renal medulla of the spontaneously hypertensive rat.
    Tyther R; Ahmeda A; Johns E; McDonagh B; Sheehan D
    J Proteome Res; 2010 May; 9(5):2678-87. PubMed ID: 20359167
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Protein S-nitrosylation: purview and parameters.
    Hess DT; Matsumoto A; Kim SO; Marshall HE; Stamler JS
    Nat Rev Mol Cell Biol; 2005 Feb; 6(2):150-66. PubMed ID: 15688001
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Equilibrium analyses of the active-site asymmetry in enterococcal NADH oxidase: role of the cysteine-sulfenic acid redox center.
    Mallett TC; Parsonage D; Claiborne A
    Biochemistry; 1999 Mar; 38(10):3000-11. PubMed ID: 10074352
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Chemical modification of proteins at cysteine: opportunities in chemistry and biology.
    Chalker JM; Bernardes GJ; Lin YA; Davis BG
    Chem Asian J; 2009 May; 4(5):630-40. PubMed ID: 19235822
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Protein sulfenation as a redox sensor: proteomics studies using a novel biotinylated dimedone analogue.
    Charles RL; Schröder E; May G; Free P; Gaffney PR; Wait R; Begum S; Heads RJ; Eaton P
    Mol Cell Proteomics; 2007 Sep; 6(9):1473-84. PubMed ID: 17569890
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Techniques for studying protein heterogeneity and post-translational modifications.
    Baumann M; Meri S
    Expert Rev Proteomics; 2004 Aug; 1(2):207-17. PubMed ID: 15966815
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A direct method for site-specific protein acetylation.
    Li F; Allahverdi A; Yang R; Lua GB; Zhang X; Cao Y; Korolev N; Nordenskiöld L; Liu CF
    Angew Chem Int Ed Engl; 2011 Oct; 50(41):9611-4. PubMed ID: 21922615
    [No Abstract]   [Full Text] [Related]  

  • 57. Cysteine-based redox switches in enzymes.
    Klomsiri C; Karplus PA; Poole LB
    Antioxid Redox Signal; 2011 Mar; 14(6):1065-77. PubMed ID: 20799881
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Reactivity of persulfides toward strained bicyclo[6.1.0]nonyne derivatives: relevance to chemical tagging of proteins.
    Galardon E; Padovani D
    Bioconjug Chem; 2015 Jun; 26(6):1013-6. PubMed ID: 26011436
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Introduction to approaches and tools for the evaluation of protein cysteine oxidation.
    Poole LB; Furdui CM; King SB
    Essays Biochem; 2020 Feb; 64(1):1-17. PubMed ID: 32031597
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Chemical Protein Modification through Cysteine.
    Gunnoo SB; Madder A
    Chembiochem; 2016 Apr; 17(7):529-53. PubMed ID: 26789551
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.