These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 21446439)
1. Effects of silane modification and temperature on tensile and fractural behaviors of carbon nanotube/epoxy nanocomposites. Lee JH; Rhee KY; Park SJ J Nanosci Nanotechnol; 2011 Jan; 11(1):275-80. PubMed ID: 21446439 [TBL] [Abstract][Full Text] [Related]
2. Silane treatment of carbon nanotubes and its effect on the tribological behavior of carbon nanotube/epoxy nanocomposites. Lee JH; Rhee KY J Nanosci Nanotechnol; 2009 Dec; 9(12):6948-52. PubMed ID: 19908704 [TBL] [Abstract][Full Text] [Related]
3. Carbon nanotube modification using gum arabic and its effect on the dispersion and tensile properties of carbon nanotubes/epoxy nanocomposites. Kim MT; Park HS; Hui D; Rhee KY J Nanosci Nanotechnol; 2011 Aug; 11(8):7369-73. PubMed ID: 22103198 [TBL] [Abstract][Full Text] [Related]
4. Augmenting static and dynamic mechanical strength of carbon nanotube/epoxy soft nanocomposites via modulation of purification and functionalization routes. Billing BK; Dhar P; Singh N; Agnihotri PK Soft Matter; 2018 Jan; 14(2):291-300. PubMed ID: 29243760 [TBL] [Abstract][Full Text] [Related]
5. High-Strength Epoxy Nanocomposites Reinforced with Photochemically Treated CNTs. Lee JW; Kim SS; Lee MW; Hwang JY; Moon SY ACS Omega; 2023 Jun; 8(22):19789-19797. PubMed ID: 37305311 [TBL] [Abstract][Full Text] [Related]
6. Carbon nanotube epoxy nanocomposites: the effects of interfacial modifications on the dynamic mechanical properties of the nanocomposites. Yoonessi M; Lebrón-Colón M; Scheiman D; Meador MA ACS Appl Mater Interfaces; 2014 Oct; 6(19):16621-30. PubMed ID: 25215892 [TBL] [Abstract][Full Text] [Related]
7. Temperature-Dependent Synergistic Effect of Multi-Walled Carbon Nanotubes and Graphene Nanoplatelets on the Tensile Quasi-Static and Fatigue Properties of Epoxy Nanocomposites. Jen YM; Chang HH; Lu CM; Liang SY Polymers (Basel); 2020 Dec; 13(1):. PubMed ID: 33379328 [TBL] [Abstract][Full Text] [Related]
8. Effect of carbon nanotube (CNT) functionalization in Epoxy-CNT composites. Roy S; Petrova RS; Mitra S Nanotechnol Rev; 2018 Dec; 7(6):475-485. PubMed ID: 30637182 [TBL] [Abstract][Full Text] [Related]
9. Using the Equivalent Fiber Approach in Two-Scale Modeling of the Elastic Behavior of Carbon Nanotube/Epoxy Nanocomposite. Javadinejad M; Mashayekhi M; Karevan M; Hadavinia H Nanomaterials (Basel); 2018 Sep; 8(9):. PubMed ID: 30200594 [TBL] [Abstract][Full Text] [Related]
10. Dynamic mechanical analysis of carbon nanotube-reinforced nanocomposites. Her SC; Lin KY J Appl Biomater Funct Mater; 2017 Jun; 15(Suppl. 1):e13-e18. PubMed ID: 28525676 [TBL] [Abstract][Full Text] [Related]
11. Mode I Fracture Toughness of Graphene Reinforced Nanocomposite Film on Al Substrate. Her SC; Zhang KC Nanomaterials (Basel); 2021 Jul; 11(7):. PubMed ID: 34361128 [TBL] [Abstract][Full Text] [Related]
12. Toward high performance thermoset/carbon nanotube sheet nanocomposites via resistive heating assisted infiltration and cure. Kim JW; Sauti G; Siochi EJ; Smith JG; Wincheski RA; Cano RJ; Connell JW; Wise KE ACS Appl Mater Interfaces; 2014 Nov; 6(21):18832-43. PubMed ID: 25325388 [TBL] [Abstract][Full Text] [Related]
13. Improvement of Fracture Toughness in Epoxy Nanocomposites through Chemical Hybridization of Carbon Nanotubes and Alumina. Zakaria MR; Abdul Kudus MH; Md Akil H; Zamri MH Materials (Basel); 2017 Mar; 10(3):. PubMed ID: 28772663 [TBL] [Abstract][Full Text] [Related]
14. Fabrication and characterization of carbon nanotube reinforced poly(methyl methacrylate) nanocomposites. Yu S; Juay YK; Young MS J Nanosci Nanotechnol; 2008 Apr; 8(4):1852-7. PubMed ID: 18572586 [TBL] [Abstract][Full Text] [Related]
15. Multiwalled Carbon Nanotube-Chitosan Scaffold: Cytotoxic, Apoptoti c, and Necrotic Effects on Chondrocyte Cell Lines. Ilbasmis-Tamer S; Ciftci H; Turk M; Degim T; Tamer U Curr Pharm Biotechnol; 2017; 18(4):327-335. PubMed ID: 28137220 [TBL] [Abstract][Full Text] [Related]
16. Mechanical and electrical properties of carbon nanotube/Cu nanocomposites by molecular-level mixing and controlled oxidation process. Lim BK; Mo CB; Nam DH; Hong SH J Nanosci Nanotechnol; 2010 Jan; 10(1):78-84. PubMed ID: 20352814 [TBL] [Abstract][Full Text] [Related]
17. Effect of carbon nanotube dispersion on glass transition in cross-linked epoxy-carbon nanotube nanocomposites: role of interfacial interactions. Khare KS; Khare R J Phys Chem B; 2013 Jun; 117(24):7444-54. PubMed ID: 23691970 [TBL] [Abstract][Full Text] [Related]
18. Effect of the amount of 3-methacyloxypropyltrimethoxysilane coupling agent on physical properties of dental resin nanocomposites. Sideridou ID; Karabela MM Dent Mater; 2009 Nov; 25(11):1315-24. PubMed ID: 19580996 [TBL] [Abstract][Full Text] [Related]
19. Biocide immobilized OMMT-carbon dot reduced Cu2O nanohybrid/hyperbranched epoxy nanocomposites: Mechanical, thermal, antimicrobial and optical properties. De B; Gupta K; Mandal M; Karak N Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():74-83. PubMed ID: 26249567 [TBL] [Abstract][Full Text] [Related]
20. Role of the Carbon Nanotube Junction in the Mechanical Performance of Carbon Nanotube/Polyethylene Nanocomposites: A Molecular Dynamics Study. Shi X; He X; Liu X Nanomaterials (Basel); 2024 Mar; 14(6):. PubMed ID: 38535668 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]