BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 21446499)

  • 1. Electrical and mechanical characterization of nanoscale-layered cellulose-based electro-active paper.
    Yun GY; Yun KJ; Kim JH; Kim J
    J Nanosci Nanotechnol; 2011 Jan; 11(1):570-3. PubMed ID: 21446499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Paper actuators made with cellulose and hybrid materials.
    Kim J; Yun S; Mahadeva SK; Yun K; Yang SY; Maniruzzaman M
    Sensors (Basel); 2010; 10(3):1473-85. PubMed ID: 22294882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly durable, biomimetic electro-active paper actuator based on cellulose polypyrrole-ionic liquid (CPIL) nanocomposite.
    Mahadeva SK; Yun K; Kim J; Kim JH
    J Nanosci Nanotechnol; 2011 Jan; 11(1):270-4. PubMed ID: 21446438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electro-Active Paper as a Flexible Mechanical Sensor, Actuator and Energy Harvesting Transducer: A Review.
    Khan A; Khan FR; Kim HS
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30326667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioactivity of cellulose acetate/hydroxyapatite nanoparticle composite fiber by an electro-spinning process.
    Kwak DH; Lee EJ; Kim DJ
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8464-71. PubMed ID: 25958547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Possibility of cellulose-based electro-active paper energy scavenging transducer.
    Abas Z; Kim HS; Zhai L; Kim J; Kim JH
    J Nanosci Nanotechnol; 2014 Oct; 14(10):7458-62. PubMed ID: 25942809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Process Orientation on the Mechanical Behavior and Piezoelectricity of Electroactive Paper.
    Yoon S; Kim JW; Kim HC; Kim J
    Materials (Basel); 2020 Jan; 13(1):. PubMed ID: 31947759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of polyelectrolyte nanocoating on the performance and durability of cellulose electro-active paper actuator.
    Mahadeva SK; Kim J
    J Nanosci Nanotechnol; 2009 Oct; 9(10):5757-63. PubMed ID: 19908449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of cellulose-L-tyrosine-silica hybrid nanocomposites by sol-gel process for high performance applications.
    Ramesh S; Kim JH
    J Nanosci Nanotechnol; 2014 Oct; 14(10):7558-61. PubMed ID: 25942825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanomechanics of molecules and living cells with scanning ion conductance microscopy.
    Schäffer TE
    Anal Chem; 2013 Aug; 85(15):6988-94. PubMed ID: 23692368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Converse piezoelectric effect in cellulose I revealed by wide-angle X-ray diffraction.
    Gindl W; Emsenhuber G; Plackner J; Konnerth J; Keckes J
    Biomacromolecules; 2010 May; 11(5):1281-5. PubMed ID: 20353195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High performance cellulose nanocomposites: comparing the reinforcing ability of bacterial cellulose and nanofibrillated cellulose.
    Lee KY; Tammelin T; Schulfter K; Kiiskinen H; Samela J; Bismarck A
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):4078-86. PubMed ID: 22839594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Progress on Cellulose-Based Electro-Active Paper, Its Hybrid Nanocomposites and Applications.
    Khan A; Abas Z; Kim HS; Kim J
    Sensors (Basel); 2016 Jul; 16(8):. PubMed ID: 27472335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecularly engineered nanocomposites: layer-by-layer assembly of cellulose nanocrystals.
    Podsiadlo P; Choi SY; Shim B; Lee J; Cuddihy M; Kotov NA
    Biomacromolecules; 2005; 6(6):2914-8. PubMed ID: 16283706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of electric papers of graphene nanosheet shelled cellulose fibres by dispersion and infiltration as flexible electrodes for energy storage.
    Kang YR; Li YL; Hou F; Wen YY; Su D
    Nanoscale; 2012 May; 4(10):3248-53. PubMed ID: 22535335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lignin-based electrospun nanofibers reinforced with cellulose nanocrystals.
    Ago M; Okajima K; Jakes JE; Park S; Rojas OJ
    Biomacromolecules; 2012 Mar; 13(3):918-26. PubMed ID: 22283444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Stable, Functional Hairy Nanoparticles and Biopolymers from Wood Fibers: Towards Sustainable Nanotechnology.
    Sheikhi A; Yang H; Alam MN; van de Ven TG
    J Vis Exp; 2016 Jul; (113):. PubMed ID: 27500560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Piezoelectric Materials for Controlling Electro-Chemical Processes.
    Qian W; Yang W; Zhang Y; Bowen CR; Yang Y
    Nanomicro Lett; 2020 Jul; 12(1):149. PubMed ID: 34138166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Natural cellulose ionogels for soft artificial muscles.
    Nevstrueva D; Murashko K; Vunder V; Aabloo A; Pihlajamäki A; Mänttäri M; Pyrhönen J; Koiranen T; Torop J
    Colloids Surf B Biointerfaces; 2018 Jan; 161():244-251. PubMed ID: 29080509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect and mechanism of cellulose nanofibrils on the active functions of biopolymer-based nanocomposite films.
    Yu Z; Alsammarraie FK; Nayigiziki FX; Wang W; Vardhanabhuti B; Mustapha A; Lin M
    Food Res Int; 2017 Sep; 99(Pt 1):166-172. PubMed ID: 28784473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.