These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 21446499)

  • 41. Synthesis and Fabrication of Nanocomposite Fibers of Collagen-Cellulose Nanocrystals by Coelectrocompaction.
    Cudjoe E; Younesi M; Cudjoe E; Akkus O; Rowan SJ
    Biomacromolecules; 2017 Apr; 18(4):1259-1267. PubMed ID: 28328202
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biodegradable cellulose acetate nanofiber fabrication via electrospinning.
    Christoforou T; Doumanidis C
    J Nanosci Nanotechnol; 2010 Sep; 10(9):6226-33. PubMed ID: 21133179
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electric-field induced strain in biological tissues.
    Doganay O; Xu Y
    J Acoust Soc Am; 2010 Nov; 128(5):EL261-7. PubMed ID: 21110536
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nano-Scale Characterization of a Piezoelectric Polymer (Polyvinylidene Difluoride, PVDF).
    Lee H; Cooper R; Wang K; Liang H
    Sensors (Basel); 2008 Nov; 8(11):7359-7368. PubMed ID: 27873933
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Orientation of native cellulose in an electric field.
    Bordel D; Putaux JL; Heux L
    Langmuir; 2006 May; 22(11):4899-901. PubMed ID: 16700569
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Modified cellulose morphologies and its composites; SEM and TEM analysis.
    Krishnamachari P; Hashaikeh R; Tiner M
    Micron; 2011 Dec; 42(8):751-61. PubMed ID: 21620715
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Multilayer bacterial cellulose/resole nanocomposites: Relationship between structural and electro-thermo-mechanical properties.
    Sheykhnazari S; Tabarsa T; Mashkour M; Khazaeian A; Ghanbari A
    Int J Biol Macromol; 2018 Dec; 120(Pt B):2115-2122. PubMed ID: 30218738
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching.
    Ren X
    Nat Mater; 2004 Feb; 3(2):91-4. PubMed ID: 14716304
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fabrication of cellulose acetate nanocomposite membranes using 2D layered nanomaterials for macromolecular separation.
    Vetrivel S; Saraswathi MSA; Rana D; Nagendran A
    Int J Biol Macromol; 2018 Feb; 107(Pt B):1607-1612. PubMed ID: 28988843
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cellulose nanofibers/reduced graphene oxide flexible transparent conductive paper.
    Gao K; Shao Z; Wu X; Wang X; Li J; Zhang Y; Wang W; Wang F
    Carbohydr Polym; 2013 Aug; 97(1):243-51. PubMed ID: 23769544
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Degradation characteristics of 2,4-dichlorophenoxyacetic acid in electro-biological system.
    Zhang J; Cao Z; Zhang H; Zhao L; Sun X; Mei F
    J Hazard Mater; 2013 Nov; 262():137-42. PubMed ID: 24018137
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Reinforcing poly(epsilon-caprolactone) nanofibers with cellulose nanocrystals.
    Zoppe JO; Peresin MS; Habibi Y; Venditti RA; Rojas OJ
    ACS Appl Mater Interfaces; 2009 Sep; 1(9):1996-2004. PubMed ID: 20355825
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Synthesis of kenaf cellulose carbamate and its smart electric stimuli-response.
    Gan S; Piao SH; Choi HJ; Zakaria S; Chia CH
    Carbohydr Polym; 2016 Feb; 137():693-700. PubMed ID: 26686181
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characterization of cellulose whiskers and their nanocomposites by atomic force and electron microscopy.
    Kvien I; Tanem BS; Oksman K
    Biomacromolecules; 2005; 6(6):3160-5. PubMed ID: 16283741
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nanomaterials: nanotubes reveal their true strength.
    Stach E
    Nat Nanotechnol; 2008 Oct; 3(10):586-7. PubMed ID: 18838994
    [No Abstract]   [Full Text] [Related]  

  • 56. Paper-based piezoelectric nanogenerators with high thermal stability.
    Kim KH; Lee KY; Seo JS; Kumar B; Kim SW
    Small; 2011 Sep; 7(18):2577-80. PubMed ID: 21805627
    [No Abstract]   [Full Text] [Related]  

  • 57. Functional biocompatible magnetite-cellulose nanocomposite fibrous networks: Characterization by fourier transformed infrared spectroscopy, X-ray powder diffraction and field emission scanning electron microscopy analysis.
    Habibi N
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt C():1450-3. PubMed ID: 25459705
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Superhydrophobic cellulose nanocomposites.
    Gonçalves G; Marques PA; Trindade T; Neto CP; Gandini A
    J Colloid Interface Sci; 2008 Aug; 324(1-2):42-6. PubMed ID: 18508072
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Preparation, properties and applications of nanocellulosic materials.
    Mondal S
    Carbohydr Polym; 2017 May; 163():301-316. PubMed ID: 28267510
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels.
    Pääkkö M; Ankerfors M; Kosonen H; Nykänen A; Ahola S; Osterberg M; Ruokolainen J; Laine J; Larsson PT; Ikkala O; Lindström T
    Biomacromolecules; 2007 Jun; 8(6):1934-41. PubMed ID: 17474776
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.