These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 21446525)

  • 1. A reclaiming process for solar cell silicon wafer surfaces.
    Pa PS
    J Nanosci Nanotechnol; 2011 Jan; 11(1):691-5. PubMed ID: 21446525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of a twins-oval tool in a precise nanostructure reclamation of digital paper displays.
    Pa PS
    J Nanosci Nanotechnol; 2009 Aug; 9(8):4851-7. PubMed ID: 19928161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kerf-Less Exfoliated Thin Silicon Wafer Prepared by Nickel Electrodeposition for Solar Cells.
    Yang HS; Kim J; Kim S; Eom NSA; Kang S; Han CS; Kim SH; Lim D; Lee JH; Park SH; Choi JW; Lee CL; Yoo B; Lim JH
    Front Chem; 2018; 6():600. PubMed ID: 30693277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoetching process on silicon solar cell wafers during mass production for surface texture improvement.
    Ahn C; Kulkarni A; Ha S; Cho Y; Kim J; Park H; Kim T
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9594-8. PubMed ID: 25971104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental Study on Surface Integrity of Solar Cell Silicon Wafers Sliced by Electrochemical Multi-Wire Saw.
    Bao G; Huang C; Zhang Y; Yu Z; Wang W
    Micromachines (Basel); 2022 Sep; 13(9):. PubMed ID: 36144092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Effect of Microstructure, Thickness Variation, and Crack on the Natural Frequency of Solar Silicon Wafers.
    Saffar S; Gouttebroze S; Zhang ZL
    J Sol Energy Eng; 2014 Feb; 136(1):0110011-110018. PubMed ID: 24891752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reclamation system design of nanostructured coatings of touch-panel.
    Pa PS
    J Nanosci Nanotechnol; 2010 Feb; 10(2):1381-6. PubMed ID: 20352803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nano-finishing of the monocrystalline silicon wafer using magnetic abrasive finishing process.
    Mosavat M; Rahimi A; Eshraghi MJ; Karami S
    Appl Opt; 2019 May; 58(13):3447-3453. PubMed ID: 31044841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of silicon films from patterned protruded seeds.
    Zeng H; Zhang W; Li J; Wang C; Yang H; Chen Y; Chen X; Liu D
    AIP Adv; 2017 May; 7(5):055307. PubMed ID: 28529821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of nanoporous silicon layer to reduce the optical losses of crystalline silicon solar cells.
    Lee S; Lee E
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3713-6. PubMed ID: 18047043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrodeposition of crystalline silicon films from silicon dioxide for low-cost photovoltaic applications.
    Zou X; Ji L; Ge J; Sadoway DR; Yu ET; Bard AJ
    Nat Commun; 2019 Dec; 10(1):5772. PubMed ID: 31852891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thickness-modulated passivation properties of PEDOT:PSS layers over crystalline silicon wafers in back junction organic/silicon solar cells.
    Zhang L; Wang Z; Lin H; Wang W; Wang J; Zhang H; Sheng J; Wu S; Gao P; Ye J; Yu T
    Nanotechnology; 2019 May; 30(19):195401. PubMed ID: 30673648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aerosol-assisted extraction of silicon nanoparticles from wafer slicing waste for lithium ion batteries.
    Jang HD; Kim H; Chang H; Kim J; Roh KM; Choi JH; Cho BG; Park E; Kim H; Luo J; Huang J
    Sci Rep; 2015 Mar; 5():9431. PubMed ID: 25819285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advanced APCVD-processes for high-temperature grown crystalline silicon thin film solar cells.
    Driessen M; Merkel B; Reber S
    J Nanosci Nanotechnol; 2011 Sep; 11(9):8174-9. PubMed ID: 22097550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sinusoidal nanotextures for light management in silicon thin-film solar cells.
    Köppel G; Rech B; Becker C
    Nanoscale; 2016 Apr; 8(16):8722-8. PubMed ID: 27065440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Attenuated total reflectance Fourier-transform infrared spectroscopic investigation of silicon heterojunction solar cells.
    Holovský J; De Wolf S; Jiříček P; Ballif C
    Rev Sci Instrum; 2015 Jul; 86(7):073108. PubMed ID: 26233357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and configuration development of silicon nitride sub-wavelength structures for solar cell application.
    Sahoo KC; Chang EY; Li Y; Lin MK; Huang JH
    J Nanosci Nanotechnol; 2010 Sep; 10(9):5692-9. PubMed ID: 21133093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic effects in amorphous silicon thin film solar cells with metal back contacts.
    Palanchoke U; Jovanov V; Kurz H; Obermeyer P; Stiebig H; Knipp D
    Opt Express; 2012 Mar; 20(6):6340-7. PubMed ID: 22418515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New insight into the discharge mechanism of silicon-air batteries using electrochemical impedance spectroscopy.
    Cohn G; Eichel RA; Ein-Eli Y
    Phys Chem Chem Phys; 2013 Mar; 15(9):3256-63. PubMed ID: 23348151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Honeycomb micro-textures for light trapping in multi-crystalline silicon thin-film solar cells.
    Eisenhauer D; Sai H; Matsui T; Köppel G; Rech B; Becker C
    Opt Express; 2018 May; 26(10):A498-A507. PubMed ID: 29801256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.