These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 21446544)

  • 1. Investigation on fabrication of nanoscale patterns using laser interference lithography.
    Choi J; Chung MH; Dong KY; Park EM; Ham DJ; Park Y; Song IS; Pak JJ; Ju BK
    J Nanosci Nanotechnol; 2011 Jan; 11(1):778-81. PubMed ID: 21446544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined laser interference and photolithography patterning of a hybrid mask mold for nanoimprint lithography.
    Ahn S; Choi J; Kim E; Dong KY; Jeon H; Ju BK; Lee KB
    J Nanosci Nanotechnol; 2011 Jul; 11(7):6039-43. PubMed ID: 22121654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Patterning nanoscale crossed grating with high uniformity by using two-axis Lloyd's mirrors based interference lithography.
    Xue G; Lu H; Li X; Zhou Q; Wu G; Wang X; Zhai Q; Ni K
    Opt Express; 2020 Jan; 28(2):2179-2191. PubMed ID: 32121913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-beam interference lithography: upgrading a Lloyd's interferometer for single-exposure hexagonal patterning.
    de Boor J; Geyer N; Gösele U; Schmidt V
    Opt Lett; 2009 Jun; 34(12):1783-5. PubMed ID: 19529702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Period-chirped gratings fabricated by laser interference lithography with a concave Lloyd's mirror.
    Kim H; Jung H; Lee DH; Lee KB; Jeon H
    Appl Opt; 2016 Jan; 55(2):354-9. PubMed ID: 26835772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanopatterning by laser interference lithography: applications to optical devices.
    Seo JH; Park JH; Kim SI; Park BJ; Ma Z; Choi J; Ju BK
    J Nanosci Nanotechnol; 2014 Feb; 14(2):1521-32. PubMed ID: 24749439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sub-50 nm patterning by immersion interference lithography using a Littrow prism as a Lloyd's interferometer.
    de Boor J; Kim DS; Schmidt V
    Opt Lett; 2010 Oct; 35(20):3450-2. PubMed ID: 20967096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 360 nm Continuous Wave Laser-Based Contact or Non-Contact Laser Interference Nano Lithography.
    Yun DH; Shin BS; Park JH; Ma YW; Gwak CY; You DB; Kim B
    J Nanosci Nanotechnol; 2020 Jan; 20(1):128-134. PubMed ID: 31383147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of multiple theories for the simulation of laser interference lithography processes.
    Lin TH; Yang YK; Fu CC
    Nanotechnology; 2017 Nov; 28(47):475301. PubMed ID: 28936985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large area periodic, systematically changing, multishape nanostructures by laser interference lithography and cell response to these topographies.
    Ertorer E; Vasefi F; Keshwah J; Najiminaini M; Halfpap C; Langbein U; Carson JJ; Hamilton DW; Mittler S
    J Biomed Opt; 2013 Mar; 18(3):035002. PubMed ID: 23460125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of subwavelength periodic nanostructures using liquid immersion Lloyd's mirror interference lithography.
    Bagal A; Chang CH
    Opt Lett; 2013 Jul; 38(14):2531-4. PubMed ID: 23939103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nano-Patterns of Photoresist Fabricated by Ultraviolet Lithography Technology.
    Cheng E; Tang S; Li C; Zou H; Wei Q
    J Nanosci Nanotechnol; 2020 Apr; 20(4):2508-2513. PubMed ID: 31492269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving feature size uniformity from interference lithography systems with non-uniform intensity profiles.
    Chang EC; Mikolas D; Lin PT; Schenk T; Wu CL; Sung CK; Fu CC
    Nanotechnology; 2013 Nov; 24(45):455301. PubMed ID: 24141145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal polarization modulation for orthogonal two-axis Lloyd's mirror interference lithography.
    Chen X; Ren Z; Shimizu Y; Chen YL; Gao W
    Opt Express; 2017 Sep; 25(19):22237-22252. PubMed ID: 29041538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative investigation on a period variation reduction method for the fabrication of large-area gratings using two-spherical-beam laser interference lithography.
    Nagaraj Rao RR; Bienert F; Moeller M; Bashir D; Hamri A; Celle F; Gamet E; Ahmed MA; Jourlin Y
    Opt Express; 2023 Jan; 31(1):371-380. PubMed ID: 36606973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-Area High Aspect Ratio Plasmonic Interference Lithography Utilizing a Single High-k Mode.
    Chen X; Yang F; Zhang C; Zhou J; Guo LJ
    ACS Nano; 2016 Apr; 10(4):4039-45. PubMed ID: 27075440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patent Review on Laser Interference Lithography Technique for Producing Periodic Nanostructure.
    Jui CW; Trappey AJC; Fu CC
    Recent Pat Nanotechnol; 2018; 12(3):231-242. PubMed ID: 30081794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Patterning of nano-scale arrays by table-top extreme ultraviolet laser interferometric lithography.
    Wachulak PW; Capeluto MG; Marconi MC; Menoni CS; Rocca JJ
    Opt Express; 2007 Mar; 15(6):3465-9. PubMed ID: 19532587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexible method based on four-beam interference lithography for fabrication of large areas of perfectly periodic plasmonic arrays.
    Vala M; Homola J
    Opt Express; 2014 Jul; 22(15):18778-89. PubMed ID: 25089495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Submicron-patterning of bulk titanium by nanoimprint lithography and reactive ion etching.
    Domanski M; Luttge R; Lamers E; Walboomers XF; Winnubst L; Jansen JA; Gardeniers JG
    Nanotechnology; 2012 Feb; 23(6):065306. PubMed ID: 22248677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.