BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 21446547)

  • 1. Memory effects of nonvolatile memory devices with a floating gate fabricated utilizing Ag nanoparticles embedded into a polymethylmethacrylate layer.
    Kim WT; Yun DY; Jung JH; Kim TW
    J Nanosci Nanotechnol; 2011 Jan; 11(1):791-5. PubMed ID: 21446547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carrier transport mechanisms of the writing and the erasing processes for Al/ZnO nanoparticles embedded in a polymethyl methacrylate layer/C60/p-Si diodes.
    Li F; Cho SW; Park KH; Son DI; Kim TW
    J Nanosci Nanotechnol; 2010 Jul; 10(7):4721-4. PubMed ID: 21128486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variations in the memory capability of nonvolatile memory devices fabricated using hybrid composites of InP nanoparticles and a polystyrene layer due to the scale-down.
    Lee SH; Yun DY; Jung JH; You JH; Kim TW; Ryu E; Kim SW
    J Nanosci Nanotechnol; 2011 Jan; 11(1):449-52. PubMed ID: 21446474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Switching Mechanisms of Nonvolatile Memory Devices Fabricated with a Polydopamine Layer.
    Yang HY; Yun DY; Kim YN; Hong JM; Kim TW
    J Nanosci Nanotechnol; 2016 Feb; 16(2):1685-8. PubMed ID: 27433647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Writing and erasing mechanisms of stable nonvolatile memory devices based on SnO2 nanoparticle/polystyrene nanocomposites.
    Yun DY; Park HM; Kim TW
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9619-22. PubMed ID: 25971108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of the memory effects for nonvolatile memory devices fabricated utilizing ZnO nanoparticles embedded in a Si3N4 layer.
    Oh DH; Cho WJ; Son DI; Kim TW
    J Nanosci Nanotechnol; 2010 May; 10(5):3508-11. PubMed ID: 20358988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Charge storage variations of organic memory devices fabricated by using C60 molecules embedded in an insulating polymer layer with Au and Al electrodes.
    Cho SH; Jung JH; Ham JH; Lee DU; Kim TW
    J Nanosci Nanotechnol; 2010 Jul; 10(7):4797-800. PubMed ID: 21128502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrical bistabilities and memory mechanisms of organic bistable devices fabricated utilizing SnO2 nanoparticles embedded in a poly(methyl methacrylate) layer.
    Kwak JK; Yun DY; Son DI; Jung JH; Lee DU; Kim TW
    J Nanosci Nanotechnol; 2010 Nov; 10(11):7735-8. PubMed ID: 21138021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonvolatile flexible organic bistable devices fabricated utilizing CdSe/ZnS nanoparticles embedded in a conducting poly N-vinylcarbazole polymer layer.
    Son DI; Kim JH; Park DH; Choi WK; Li F; Ham JH; Kim TW
    Nanotechnology; 2008 Feb; 19(5):055204. PubMed ID: 21817602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organic memory capacitor device fabricated with Ag nanoparticles.
    Kim YH; Jung SM; Hu Q; Kim YS; Yoon TS; Lee HH
    J Nanosci Nanotechnol; 2011 Jul; 11(7):6044-8. PubMed ID: 22121655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrical characteristics of floating-gate memory devices with titanium nanoparticles embedded in gate oxides.
    Park B; Cho K; Yun J; Koo YS; Lee JH; Kim S
    J Nanosci Nanotechnol; 2009 Mar; 9(3):1904-8. PubMed ID: 19435057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Operating mechanisms of organic bistable devices containing ZnO nanoparticles embedded in a poly-4-vinyl-phenol layer.
    Park KH; Li F; Jung JH; Son DI; Cho SW; Kim TW
    J Nanosci Nanotechnol; 2010 Jul; 10(7):4801-4. PubMed ID: 21128503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carrier transport in flexible organic bistable devices of ZnO nanoparticles embedded in an insulating poly(methyl methacrylate) polymer layer.
    Son DI; Park DH; Choi WK; Cho SH; Kim WT; Kim TW
    Nanotechnology; 2009 May; 20(19):195203. PubMed ID: 19420634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polymer-ultrathin graphite sheet-polymer composite structured flexible nonvolatile bistable organic memory devices.
    Son DI; Shim JH; Park DH; Jung JH; Lee JM; Park WI; Kim TW; Choi WK
    Nanotechnology; 2011 Jul; 22(29):295203. PubMed ID: 21685558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Memory characteristics of doubly stacked nano-floating gate memory devices with channels of single ZnO nanowires.
    Kim S; Cho K; Kwak K; Kim S
    J Nanosci Nanotechnol; 2013 Sep; 13(9):6196-8. PubMed ID: 24205627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics of AgInSbTe-SiO2 nanocomposite thin film applied to nonvolatile floating gate memory devices.
    Chiang KC; Hsieh TE
    Nanotechnology; 2010 Oct; 21(42):425204. PubMed ID: 20858935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-Walled Carbon-Nanotubes-Based Organic Memory Structures.
    Fakher S; Nejm R; Ayesh A; Al-Ghaferi A; Zeze D; Mabrook M
    Molecules; 2016 Sep; 21(9):. PubMed ID: 27598112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of needle-like silicon nanosurface on the charge storage characteristics of silicon nanocrystals embedded within silicon nitride matrix.
    Jung S; Son H; Kim J; Park DH; Sohn BH; Kim K; Yi J
    J Nanosci Nanotechnol; 2008 Oct; 8(10):5004-8. PubMed ID: 19198379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Covalent assembly of gold nanoparticles for nonvolatile memory applications.
    Gupta RK; Kusuma DY; Lee PS; Srinivasan MP
    ACS Appl Mater Interfaces; 2011 Dec; 3(12):4619-25. PubMed ID: 22023018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved Memory Effect of ZnO Nanorods Embedded in an Insulating Polymethylmethacrylate Layer.
    Valanarasu S; Kathaiingam A; Rhee JK; Chandramohan R; Vijayan TA; Karunakaran M
    J Nanosci Nanotechnol; 2015 Feb; 15(2):1416-20. PubMed ID: 26353665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.