These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 21446566)
1. Effects of rotating nanoparticles on the instability of dust-acoustic waves in a plasma containing superthermal electrons and ions. Lee MJ J Nanosci Nanotechnol; 2011 Jan; 11(1):880-3. PubMed ID: 21446566 [TBL] [Abstract][Full Text] [Related]
2. Dual-frequency modes of the dust acoustic surface wave in a semibounded system. Lee MJ; Jung YD Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):013105. PubMed ID: 26274292 [TBL] [Abstract][Full Text] [Related]
3. Roles of superthermal electrons and positrons on positron-acoustic solitary waves and double layers in electron-positron-ion plasmas. Alam MS; Uddin MJ; Masud MM; Mamun AA Chaos; 2014 Sep; 24(3):033130. PubMed ID: 25273210 [TBL] [Abstract][Full Text] [Related]
4. Kinetic instability of the dust acoustic mode in inhomogeneous, partially magnetized plasma with both positively and negatively charged grains. Vranjes J; Poedts S Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 2):026411. PubMed ID: 20866930 [TBL] [Abstract][Full Text] [Related]
5. Ambipolar diffusion in complex plasma. Losseva TV; Popel SI; Yu MY; Ma JX Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 2):046403. PubMed ID: 17501000 [TBL] [Abstract][Full Text] [Related]
6. Ion-acoustic waves in a complex plasma with negative ions. Vladimirov SV; Ostrikov K; Yu MY; Morfill GE Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 2):036406. PubMed ID: 12689170 [TBL] [Abstract][Full Text] [Related]
11. Quantum-tunneling-enhanced charging of nanoparticles in plasmas. Tyshetskiy Y; Vladimirov SV Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046406. PubMed ID: 21599315 [TBL] [Abstract][Full Text] [Related]
12. Electron-acoustic solitary potential in nonextensive streaming plasma. Khan K; Algahtani O; Irfan M; Ali A Sci Rep; 2022 Sep; 12(1):15175. PubMed ID: 36071067 [TBL] [Abstract][Full Text] [Related]
13. Experimental Methods of Dust Charging and Mobilization on Surfaces with Exposure to Ultraviolet Radiation or Plasmas. Wang X; Schwan J; Hood N; Hsu HW; Grün E; Horányi M J Vis Exp; 2018 Apr; (134):. PubMed ID: 29683448 [TBL] [Abstract][Full Text] [Related]
16. Transport and trapping of dust particles in a potential well created by inductively coupled diffused plasmas. Choudhary M; Mukherjee S; Bandyopadhyay P Rev Sci Instrum; 2016 May; 87(5):053505. PubMed ID: 27250421 [TBL] [Abstract][Full Text] [Related]
17. Dust-acoustic rogue waves in a nonextensive plasma. Moslem WM; Sabry R; El-Labany SK; Shukla PK Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 2):066402. PubMed ID: 22304203 [TBL] [Abstract][Full Text] [Related]
18. Effects of nonthermal ions and polarization force on dust-acoustic waves in a density-varying dusty plasma. Asaduzzaman M; Mamun AA Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016409. PubMed ID: 23005552 [TBL] [Abstract][Full Text] [Related]
19. Dust-acoustic wave instabilities in collisional plasmas. Ostrikov KN; Vladimirov SV; Yu MY; Morfill GE Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Apr; 61(4 Pt B):4315-21. PubMed ID: 11088228 [TBL] [Abstract][Full Text] [Related]
20. Heavy ion-acoustic rogue waves in electron-positron multi-ion plasmas. Chowdhury NA; Mannan A; Hasan MM; Mamun AA Chaos; 2017 Sep; 27(9):093105. PubMed ID: 28964149 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]