These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 21446731)

  • 1. Oxide nanotubes on Ti-Ru alloys: strongly enhanced and stable photoelectrochemical activity for water splitting.
    Roy P; Das C; Lee K; Hahn R; Ruff T; Moll M; Schmuki P
    J Am Chem Soc; 2011 Apr; 133(15):5629-31. PubMed ID: 21446731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nb doped TiO2 nanotubes for enhanced photoelectrochemical water-splitting.
    Das C; Roy P; Yang M; Jha H; Schmuki P
    Nanoscale; 2011 Aug; 3(8):3094-6. PubMed ID: 21761039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ta-doped TiO2 nanotubes for enhanced solar-light photoelectrochemical water splitting.
    Altomare M; Lee K; Killian MS; Selli E; Schmuki P
    Chemistry; 2013 May; 19(19):5841-4. PubMed ID: 23519978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced photoassisted water electrolysis using vertically oriented anodically fabricated Ti-Nb-Zr-O mixed oxide nanotube arrays.
    Allam NK; Alamgir F; El-Sayed MA
    ACS Nano; 2010 Oct; 4(10):5819-26. PubMed ID: 20815374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced photoelectrochemical water splitting performance of anodic TiO(2) nanotube arrays by surface passivation.
    Gui Q; Xu Z; Zhang H; Cheng C; Zhu X; Yin M; Song Y; Lu L; Chen X; Li D
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):17053-8. PubMed ID: 25198058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-organized nanotubular oxide layers on Ti-6Al-7Nb and Ti-6Al-4V formed by anodization in NH4F solutions.
    Macak JM; Tsuchiya H; Taveira L; Ghicov A; Schmuki P
    J Biomed Mater Res A; 2005 Dec; 75(4):928-33. PubMed ID: 16138327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effectiveness of nitrogen incorporation to enhance the photoelectrochemical activity of nanostructured TiO2:NH3 versus H2-N2 annealing.
    Fàbrega C; Andreu T; Güell F; Prades JD; Estradé S; Rebled JM; Peiró F; Morante JR
    Nanotechnology; 2011 Jun; 22(23):235403. PubMed ID: 21474865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TiO2-WO3 composite nanotubes by alloy anodization: growth and enhanced electrochromic properties.
    Nah YC; Ghicov A; Kim D; Berger S; Schmuki P
    J Am Chem Soc; 2008 Dec; 130(48):16154-5. PubMed ID: 18998674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anodic nanotubular/porous hematite photoanode for solar water splitting: substantial effect of iron substrate purity.
    Lee CY; Wang L; Kado Y; Killian MS; Schmuki P
    ChemSusChem; 2014 Mar; 7(3):934-40. PubMed ID: 24677770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrafast growth of highly ordered anodic TiO2 nanotubes in lactic acid electrolytes.
    So S; Lee K; Schmuki P
    J Am Chem Soc; 2012 Jul; 134(28):11316-8. PubMed ID: 22725719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced solar water-splitting efficiency using core/sheath heterostructure CdS/TiO2 nanotube arrays.
    Yin Y; Jin Z; Hou F
    Nanotechnology; 2007 Dec; 18(49):495608. PubMed ID: 20442481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nb doping of TiO2 nanotubes for an enhanced efficiency of dye-sensitized solar cells.
    Yang M; Kim D; Jha H; Lee K; Paul J; Schmuki P
    Chem Commun (Camb); 2011 Feb; 47(7):2032-4. PubMed ID: 21184009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical formation of self-organized anodic nanotube coating on Ti-28Zr-8Nb biomedical alloy surface.
    Feng XJ; Macak JM; Albu SP; Schmuki P
    Acta Biomater; 2008 Mar; 4(2):318-23. PubMed ID: 17923448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel solid-state electrochemiluminescence sensor based on Ru(bpy)(3)(2+) immobilization on TiO(2) nanotube arrays and its application for detection of amines in water.
    Xu Z; Yu J
    Nanotechnology; 2010 Jun; 21(24):245501. PubMed ID: 20484789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Making oxygen with ruthenium complexes.
    Concepcion JJ; Jurss JW; Brennaman MK; Hoertz PG; Patrocinio AO; Murakami Iha NY; Templeton JL; Meyer TJ
    Acc Chem Res; 2009 Dec; 42(12):1954-65. PubMed ID: 19817345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Doped TiO2 and TiO2 nanotubes: synthesis and applications.
    Nah YC; Paramasivam I; Schmuki P
    Chemphyschem; 2010 Sep; 11(13):2698-713. PubMed ID: 20648515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoelectrocatalytic COD determination method using highly ordered TiO(2) nanotube array.
    Zhang J; Zhou B; Zheng Q; Li J; Bai J; Liu Y; Cai W
    Water Res; 2009 Apr; 43(7):1986-92. PubMed ID: 19269664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tailored TiO2-SrTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance.
    Zhang J; Bang JH; Tang C; Kamat PV
    ACS Nano; 2010 Jan; 4(1):387-95. PubMed ID: 20000756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydroxyapatite growth on anodic TiO2 nanotubes.
    Tsuchiya H; Macak JM; Müller L; Kunze J; Müller F; Greil P; Virtanen S; Schmuki P
    J Biomed Mater Res A; 2006 Jun; 77(3):534-41. PubMed ID: 16489589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitization and stabilization of TiO(2) photoanodes with electropolymerized overlayer films of ruthenium and zinc polypyridyl complexes: a stable aqueous photoelectrochemical cell.
    Moss JA; Yang JC; Stipkala JM; Wen X; Bignozzi CA; Meyer GJ; Meyer TJ
    Inorg Chem; 2004 Mar; 43(5):1784-92. PubMed ID: 14989672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.