These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
342 related articles for article (PubMed ID: 21446737)
1. Transport and retention of TiO2 rutile nanoparticles in saturated porous media under low-ionic-strength conditions: measurements and mechanisms. Chen G; Liu X; Su C Langmuir; 2011 May; 27(9):5393-402. PubMed ID: 21446737 [TBL] [Abstract][Full Text] [Related]
2. TiO₂ nanoparticle transport and retention through saturated limestone porous media under various ionic strength conditions. Esfandyari Bayat A; Junin R; Derahman MN; Samad AA Chemosphere; 2015 Sep; 134():7-15. PubMed ID: 25889359 [TBL] [Abstract][Full Text] [Related]
3. Mechanisms of TiO2 nanoparticle transport in porous media: role of solution chemistry, nanoparticle concentration, and flowrate. Chowdhury I; Hong Y; Honda RJ; Walker SL J Colloid Interface Sci; 2011 Aug; 360(2):548-55. PubMed ID: 21640358 [TBL] [Abstract][Full Text] [Related]
4. Role of solution chemistry and ion valence on the adhesion kinetics of groundwater and marine bacteria. Chen G; Walker SL Langmuir; 2007 Jun; 23(13):7162-9. PubMed ID: 17523680 [TBL] [Abstract][Full Text] [Related]
5. Macromolecule mediated transport and retention of Escherichia coli O157:H7 in saturated porous media. Kim HN; Walker SL; Bradford SA Water Res; 2010 Feb; 44(4):1082-93. PubMed ID: 19853881 [TBL] [Abstract][Full Text] [Related]
6. Colloid transport in unsaturated porous media: the role of water content and ionic strength on particle straining. Torkzaban S; Bradford SA; van Genuchten MT; Walker SL J Contam Hydrol; 2008 Feb; 96(1-4):113-27. PubMed ID: 18068262 [TBL] [Abstract][Full Text] [Related]
7. Aggregation and transport of nano-TiO2 in saturated porous media: effects of pH, surfactants and flow velocity. Godinez IG; Darnault CJ Water Res; 2011 Jan; 45(2):839-51. PubMed ID: 20947120 [TBL] [Abstract][Full Text] [Related]
8. Coupling of physical and chemical mechanisms of colloid straining in saturated porous media. Bradford SA; Torkzaban S; Walker SL Water Res; 2007 Jul; 41(13):3012-24. PubMed ID: 17475302 [TBL] [Abstract][Full Text] [Related]
9. Fecal indicator bacteria transport and deposition in saturated and unsaturated porous media. Chen G; Walker SL Environ Sci Technol; 2012 Aug; 46(16):8782-90. PubMed ID: 22809290 [TBL] [Abstract][Full Text] [Related]
10. Modeling the transport of TiO2 nanoparticle aggregates in saturated and unsaturated granular media: effects of ionic strength and pH. Fang J; Xu MJ; Wang DJ; Wen B; Han JY Water Res; 2013 Mar; 47(3):1399-408. PubMed ID: 23276424 [TBL] [Abstract][Full Text] [Related]
11. Deposition of TiO2 nanoparticles onto silica measured using a quartz crystal microbalance with dissipation monitoring. Fatisson J; Domingos RF; Wilkinson KJ; Tufenkji N Langmuir; 2009 Jun; 25(11):6062-9. PubMed ID: 19466771 [TBL] [Abstract][Full Text] [Related]
12. Distinct effects of humic acid on transport and retention of TiO2 rutile nanoparticles in saturated sand columns. Chen G; Liu X; Su C Environ Sci Technol; 2012 Jul; 46(13):7142-50. PubMed ID: 22681399 [TBL] [Abstract][Full Text] [Related]
13. Concurrent aggregation and deposition of TiO2 nanoparticles in a sandy porous media. Solovitch N; Labille J; Rose J; Chaurand P; Borschneck D; Wiesner MR; Bottero JY Environ Sci Technol; 2010 Jul; 44(13):4897-902. PubMed ID: 20524647 [TBL] [Abstract][Full Text] [Related]
14. Influence of biofilm on the transport of fullerene (C60) nanoparticles in porous media. Tong M; Ding J; Shen Y; Zhu P Water Res; 2010 Feb; 44(4):1094-103. PubMed ID: 19875145 [TBL] [Abstract][Full Text] [Related]
15. Transport of graphene oxide in saturated porous media: effect of cation composition in mixed Na-Ca electrolyte systems. Fan W; Jiang XH; Yang W; Geng Z; Huo MX; Liu ZM; Zhou H Sci Total Environ; 2015 Apr; 511():509-15. PubMed ID: 25577737 [TBL] [Abstract][Full Text] [Related]
16. Colloid transport and retention in unsaturated porous media: effect of colloid input concentration. Zhang W; Morales VL; Cakmak ME; Salvucci AE; Geohring LD; Hay AG; Parlange JY; Steenhuis TS Environ Sci Technol; 2010 Jul; 44(13):4965-72. PubMed ID: 20521810 [TBL] [Abstract][Full Text] [Related]
17. Deposition kinetics of zinc oxide nanoparticles on natural organic matter coated silica surfaces. Jiang X; Tong M; Li H; Yang K J Colloid Interface Sci; 2010 Oct; 350(2):427-34. PubMed ID: 20673672 [TBL] [Abstract][Full Text] [Related]
18. Experimental measurements and numerical simulations of the transport and retention of nanocrystal CdSe/ZnS quantum dots in saturated porous media: effects of pH, organic ligand, and natural organic matter. Li C; Hassan A; Palmai M; Xie Y; Snee PT; Powell BA; Murdoch LC; Darnault CJG Environ Sci Pollut Res Int; 2021 Feb; 28(7):8050-8073. PubMed ID: 33051847 [TBL] [Abstract][Full Text] [Related]
19. Nano-SiO Ghosh D; Das S; Gahlot VK; Pulimi M; Anand S; Chandrasekaran N; Rai PK; Mukherjee A J Contam Hydrol; 2022 Jun; 248():104029. PubMed ID: 35653834 [TBL] [Abstract][Full Text] [Related]
20. Coupled factors influencing the transport and retention of Cryptosporidium parvum oocysts in saturated porous media. Kim HN; Walker SL; Bradford SA Water Res; 2010 Feb; 44(4):1213-23. PubMed ID: 19854467 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]