BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 21447384)

  • 1. Toward a comprehensive characterization of the phosphotyrosine proteome.
    Bergström Lind S; Artemenko KA; Elfineh L; Mayrhofer C; Zubarev RA; Bergquist J; Pettersson U
    Cell Signal; 2011 Aug; 23(8):1387-95. PubMed ID: 21447384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of immunoaffinity enrichment and detection: toward a comprehensive characterization of the phosphotyrosine proteome of K562 cells by liquid chromatography-mass spectrometry.
    Artemenko KA; Bergström Lind S; Elfineh L; Mayrhofer C; Zubarev RA; Bergquist J; Pettersson U
    Analyst; 2011 May; 136(9):1971-8. PubMed ID: 21403953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A strategy for identification of protein tyrosine phosphorylation.
    Lind SB; Artemenko KA; Pettersson U
    Methods; 2012 Feb; 56(2):275-83. PubMed ID: 21986561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immunoaffinity enrichments followed by mass spectrometric detection for studying global protein tyrosine phosphorylation.
    Bergström Lind S; Molin M; Savitski MM; Emilsson L; Aström J; Hedberg L; Adams C; Nielsen ML; Engström A; Elfineh L; Andersson E; Zubarev RA; Pettersson U
    J Proteome Res; 2008 Jul; 7(7):2897-910. PubMed ID: 18543961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of tyrosine phosphorylated proteins by combination of immunoaffinity enrichment, two-dimensional difference gel electrophoresis and fluorescent Western blotting.
    Bergström Lind S; Hagner-McWhirter S; Elfineh L; Molin M; Jorsback A; Ohman J; Pettersson U
    Biochem Biophys Res Commun; 2010 Oct; 401(4):581-5. PubMed ID: 20888324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gas-phase intramolecular phosphate shift in phosphotyrosine-containing peptide monoanions.
    Edelson-Averbukh M; Shevchenko A; Pipkorn R; Lehmann WD
    Anal Chem; 2009 Jun; 81(11):4369-81. PubMed ID: 19402683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tyrosine phosphoproteomics and identification of substrates of protein tyrosine phosphatase dPTP61F in Drosophila S2 cells by mass spectrometry-based substrate trapping strategy.
    Chang YC; Lin SY; Liang SY; Pan KT; Chou CC; Chen CH; Liao CL; Khoo KH; Meng TC
    J Proteome Res; 2008 Mar; 7(3):1055-66. PubMed ID: 18281928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-Step SH2 Superbinder-Based Approach for Sensitive Analysis of Tyrosine Phosphoproteome.
    Yao Y; Wang Y; Wang S; Liu X; Liu Z; Li Y; Fang Z; Mao J; Zheng Y; Ye M
    J Proteome Res; 2019 Apr; 18(4):1870-1879. PubMed ID: 30875230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of enrichment techniques for mass spectrometry: identification of tyrosine phosphoproteins in cancer cells.
    Schumacher JA; Crockett DK; Elenitoba-Johnson KS; Lim MS
    J Mol Diagn; 2007 Apr; 9(2):169-77. PubMed ID: 17384208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of dynamic tyrosine phosphoproteome in LFA-1 triggered migrating T-cells.
    Verma NK; Dempsey E; Freeley M; Botting CH; Long A; Kelleher D; Volkov Y
    J Cell Physiol; 2011 Jun; 226(6):1489-98. PubMed ID: 20945386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic analysis reveals novel molecules involved in insulin signaling pathway.
    Wang Y; Li R; Du D; Zhang C; Yuan H; Zeng R; Chen Z
    J Proteome Res; 2006 Apr; 5(4):846-55. PubMed ID: 16602692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increase of phosphotyrosine-containing proteins in human carcinomas.
    Ogawa R; Ohtsuka M; Sasadaira H; Hirasa M; Yabe H; Uchida H; Watanabe Y
    Jpn J Cancer Res; 1985 Nov; 76(11):1049-55. PubMed ID: 2418000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeted analysis of tyrosine phosphorylation by immuno-affinity enrichment of tyrosine phosphorylated peptides prior to mass spectrometric analysis.
    Zoumaro-Djayoon AD; Heck AJ; Muñoz J
    Methods; 2012 Feb; 56(2):268-74. PubMed ID: 21945579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of tyrosine phosphorylated peptides via skimmer collision-induced dissociation/ion trap mass spectrometry.
    Zolodz MD; Wood KV
    J Mass Spectrom; 2003 Mar; 38(3):257-64. PubMed ID: 12644986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tandem Mass Tag Approach Utilizing Pervanadate BOOST Channels Delivers Deeper Quantitative Characterization of the Tyrosine Phosphoproteome.
    Chua XY; Mensah T; Aballo T; Mackintosh SG; Edmondson RD; Salomon AR
    Mol Cell Proteomics; 2020 Apr; 19(4):730-743. PubMed ID: 32071147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitive, Robust, and Cost-Effective Approach for Tyrosine Phosphoproteome Analysis.
    Dong M; Bian Y; Wang Y; Dong J; Yao Y; Deng Z; Qin H; Zou H; Ye M
    Anal Chem; 2017 Sep; 89(17):9307-9314. PubMed ID: 28796482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First insight into the human liver proteome from PROTEOME(SKY)-LIVER(Hu) 1.0, a publicly available database.
    Chinese Human Liver Proteome Profiling Consortium
    J Proteome Res; 2010 Jan; 9(1):79-94. PubMed ID: 19653699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterizing phosphoproteins and phosphoproteomes using mass spectrometry.
    Goshe MB
    Brief Funct Genomic Proteomic; 2006 Feb; 4(4):363-76. PubMed ID: 17202127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-scale analysis of the human ubiquitin-related proteome.
    Matsumoto M; Hatakeyama S; Oyamada K; Oda Y; Nishimura T; Nakayama KI
    Proteomics; 2005 Nov; 5(16):4145-51. PubMed ID: 16196087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Throughput and Integrated Chemical Proteomic Approach for Profiling Phosphotyrosine Signaling Complexes.
    Kong Q; Huang P; Chu B; Ke M; Chen W; Zheng Z; Ji S; Cai Z; Li P; Tian R
    Anal Chem; 2020 Jul; 92(13):8933-8942. PubMed ID: 32539344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.